Смотреть что такое "Нанотехнология" в других словарях. Нанотехнологии: кто и когда их придумал Что такое нано технологии производства

Нанотехнология – область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

История

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Внизу полным-полно места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире, будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма.

Последний этап – полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой, собирать макровещи. Это позволит сделать вещи на порядок дешевле – таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. В ходе теоретического исследования данной возможности появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: Грядущая эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology») и «Nanosystems: Molecular Machinery, Manufacturing, and Computation».

На что способны нанотехнологии?

Вот только некоторые области, в которых нанотехнологии обещают прорыв:

Медицина

Наносенсоры обеспечат прогресс в ранней диагностике заболеваний. Это увеличит шансы на выздоровление. Мы сможем победить рак и другие болезни. Старые лекарства от рака уничтожали не только больные клетки, но и здоровые. С помощью нанотехнологий лекарство будет доставляться непосредственно в больную клетку.

ДНК‑нанотехнологии – используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур. Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).

В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии –наноплазмонике . Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Строительство

Нанодатчики строительных конструкций будут следить за их прочностью, обнаруживать любые угрозы целостности. Объекты, построенные с использованием нанотехнологий, смогут прослужить в пять раз дольше, чем современные сооружения. Дома будут подстраиваться под потребности жильцов, обеспечивая им прохладу летом и сохраняя тепло зимой.

Энергетика

Мы меньше будем зависеть от нефти и газа. У современных солнечных батарей КПД около 20%. С применением нанотехнологий он может вырасти в 2-3 раза. Тонкие нанопленки на крыше и стенах смогут обеспечить энергией весь дом (если, конечно, солнца будет достаточно).

Машиностроение

Всю громоздкую технику заменят роботы – легко управляемые устройства. Они смогут создавать любые механизмы на уровне атомов и молекул. Для производства машин будут использоваться новые наноматериалы, которые способны снижать трение, защищать детали от повреждений, экономить энергию. Это далеко не все сферы, в которых могут (и будут!) применяться нанотехнологии. Ученые считают, что появление нанотехнологий – начало новой Научно-технической революции, которая сильно изменит мир уже в ХХI веке. Стоит, правда, заметить, что в реальную практику нанотехнологии входят не очень быстро. Не так много устройств (в основном электроника) работает «с нано». Отчасти это объясняется высокой ценой нанотехнологий и не слишком высокой отдачей от нанотехнологической продукции.

Вероятно, уже в недалёком будущем с помощью нанотехнологий будут созданы высокотехнологичные, мобильные, легко управляемые устройства, которые успешно заменят пусть и автоматизированную, но сложную в управлении и громоздкую технику сегодняшнего дня. Так, например, со временем биороботы, управляемые посредством компьютера, смогут выполнять функции нынешних громоздких насосных станций.

  • ДНК‑компьютер – вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления – это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.
  • Атомно‑силовой микроскоп – сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
  • Антенна‑осциллятор – 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

10 нанотехнологий с удивительным потенциалом

Попробуйте вспомнить какое-нибудь каноническое изобретение. Вероятно, кто-то сейчас представил себе колесо, кто-то самолет, а кто-то и «айпод». А многие ли из вас подумали об изобретении совсем нового поколения – нанотехнологиях? Этот мир малоизучен, но обладает невероятным потенциалом, способным подарить нам действительно фантастические вещи. Удивительная вещь: направление нанотехнологий не существовало до 1975 года, даже несмотря на то, что ученые начали работать в этой сфере гораздо раньше.

Невооруженный глаз человека способен распознать объекты размером до 0,1 миллиметра. Мы же сегодня поговорим о десяти изобретениях, которые в 100 000 раз меньше.

Электропроводимый жидкий металл

За счет электричества можно заставить простой сплав жидкого металла, состоящий из галлия, иридия и олова, образовывать сложные фигуры или же наматывать круги внутри чашки Петри. Можно с некоторой долей вероятности сказать, что это материал, из которого был создан знаменитый киборг серии T-1000, которого мы могли видеть «Терминаторе 2».

«Мягкий сплав ведет себя как умная форма, способная при необходимости самостоятельно деформироваться с учетом изменяющегося окружающего пространства, по которому он движется. Прямо как мог делать киборг из популярной научно-фантастической киноленты», – делится Джин Ли из университета Цинхуа, один из исследователей, занимавшихся данным проектом.

Этот металл биомиметический, то есть он имитирует биохимические реакции, хотя сам не является биологическим веществом.

Управлять этим металлом можно за счет электрических разрядов. Однако он и сам способен самостоятельно передвигаться, за счет появляющегося дисбаланса нагрузки, которое создается разностью в давлении между фронтальной и тыльной частью каждой капли этого металлического сплава. И хотя ученые считают, что этот процесс может являться ключом к конвертации химической энергии в механическую, молекулярный материал в ближайшем будущем не собираются использовать для строительства злых киборгов. Весь процесс «магии» может происходить только в растворе гидроксида натрия или соляном растворе.

Нанопластыри

Исследователи из Йоркского университета работают над созданием специальных пластырей, которые будут предназначаться для доставки всех необходимых лекарств внутрь организма без какого-либо использования иголок и шприцов. Пластыри вполне себе обычного размера приклеиваются к руке, доставляют определенную дозу наночастиц лекарственного средства (достаточно маленькие, чтобы проникнуть через волосяные фолликулы) внутрь вашего организма. Наночастицы (каждая размером менее 20 нанометров) сами найдут вредоносные клетки, убьют их и будут выведены из организма вместе с другими клетками в результате естественных процессов.

Ученые отмечают, что в будущем такие нанопластыри можно будет использовать при борьбе с одним из самых страшных заболеваний на Земле – раком. В отличие от химиотерапии, которая в таких случаях чаще всего является неотъемлемой частью лечения, нанопластыри смогут в индивидуальном порядке находить и уничтожать раковые клетки и оставлять при этом здоровые клетки нетронутыми. Проект нанопластыря получил название «NanJect». Его разработкой занимаются Атиф Сайед и Закария Хуссейн, которые в 2013 году, еще будучи студентами, получили необходимое спонсирование в рамках краудсорсинговой компании по привлечению средств.

Нанофильтр для воды

При использовании этой пленки в сочетании с тонкой сеткой из нержавеющей стали нефть отталкивается, и вода в этом месте становится первозданно чистой.

Что интересно, на создание нанопленки ученых вдохновила сама природа. Листья лотоса, также известного как водяная лилия, обладают свойствами, противоположными свойствам нанопленки: вместо нефти они отталкивают воду. Ученые уже не первый раз подглядывают у этих удивительных растений их не менее удивительные свойства. Результатом этого, например, стало создание супергидрофобных материалов в 2003 году. Что же касается нанопленки, исследователи стараются создать материал, имитирующий поверхность водяных лилий, и обогатить его молекулами специального очищающего средства. Само покрытие невидимо для человеческого глаза. Производство будет недорогим: примерно 1 доллар за квадратный фут.

Очиститель воздуха для подводных лодок

Вряд ли кто-то задумывался о том, каким воздухом приходится дышать экипажам подводных лодок, кроме самих членов экипажа. А между тем очистка воздуха от двуокиси углерода должна производиться немедленно, так как за одно плаванье через легкие команды подлодки одному и тому же воздуху приходится проходить сотни раз. Для очистки воздуха от углекислого газа используют амины, обладающие весьма неприятным запахом. Для решения этого вопроса была создана технология очистки, получившая название SAMMS (аббревиатура от Self-Assembled Monolayers on Mesoporous Supports). Она предлагает использование специальных наночастиц, помещенных внутрь керамических гранул. Вещество обладает пористой структурой, благодаря которой оно поглощает избыток углекислого газа. Различные типы очистки SAMMS взаимодействуют с различными молекулами в воздухе, воде и земле, однако все из этих вариантов очисток невероятно эффективны. Всего одной столовой ложки таких пористых керамических гранул хватит для очистки площади, равной одному футбольному полю.

Нанопроводники

Исследователи Северо-Западного университета (США) выяснили, как создать электрический проводник на наноуровне. Этот проводник представляет собой твердую и прочную наночастицу, которая может быть настроена на передачу электрического тока в различных противоположных направлениях. Исследование показывает, что каждая такая наночастица способна эмулировать работу «выпрямителя тока, переключателей и диодов». Каждая частица толщиной 5 нанометров покрыта положительно заряженным химическим веществом и окружена отрицательно заряженными атомами. Подача электрического разряда реконфигурирует отрицательно заряженные атомы вокруг наночастиц.

Потенциал у технологии, как сообщают ученые, небывалый. На ее основе можно создавать материалы, «способные самостоятельно изменяться под определенные компьютерные вычислительные задачи». Использование этого наноматериала позволит фактически «перепрограммировать» электронику будущего. Аппаратные обновления станут такими же легкими, как и программные.

Нанотехнологическое зарядное устройство

Когда эту штуку создадут, то вам больше не потребуется использовать никакие проводные зарядные устройства. Новая нанотехнология работает как губка, только впитывает не жидкость. Она высасывает из окружающей среды кинетическую энергию и направляет ее прямо в ваш смартфон. Основа технологии заключается в использовании пьезоэлектрического материала, который генерирует электричество, находясь в состоянии механического напряжения. Материал наделен наноскопическими порами, которые превращают его в гибкую губку.

Официальное название этого устройства – «наногенератор». Такие наногенераторы могут однажды стать частью каждого смартфона на планете или же частью приборной панели каждого автомобиля, а возможно, и частью каждого кармана одежды – гаджеты будут заряжаться прямо в нем. Кроме того, технология имеет потенциал использования на более масштабном уровне, например, в промышленном оборудовании. По крайней мере так считают исследователи из Висконсинского университета в Мадисоне, создавшие эту удивительную наногубку.

Искусственная сетчатка

Израильская компания Nano Retina разрабатывает интерфейс, который будет напрямую подключатся к нейронам глаза и передавать результат нейронного моделирования в мозг, заменяя сетчатку и возвращая людям зрение.

Эксперимент на слепой курице показал надежду на успешность проекта. Нанопленка позволила курице увидеть свет. Правда, до конечной стадии разработки искусственной сетчатки для возвращения людям зрения пока еще далеко, но наличие прогресса в этом направлении не может не радовать. Nano Retina – не единственная компания, которая занимается подобными разработками, однако именно их технология на данный момент видится наиболее перспективной, эффективной и адаптивной. Последний пункт наиболее важен, так как мы говорим о продукте, который будет интегрироваться в чьи-то глаза. Похожие разработки показали, что твердые материалы непригодны для использования в подобных целях.

Так как технология разрабатывается на нанотехнологическом уровне, она позволяет исключить использование металла и проводов, а также избежать низкого разрешения моделируемой картинки.

Светящаяся одежда

Шанхайские ученые разработали светоотражающие нити, которые можно использовать при производстве одежды. Основой каждой нити является очень тонкая проволока из нержавеющей стали, которую покрывают специальными наночастицами, слоем электролюминесцентного полимера, а также защитной оболочкой из прозрачных нанотрубок. В результате получаются очень легкие и гибкие нитки, способные светиться под воздействием своей собственной электрохимической энергии. При этом работают они на гораздо меньшей мощности, по сравнению с обычными светодиодами.

Недостаток технологии заключается в том, что «запаса света» у ниток хватает пока всего лишь на нескольких часов. Однако разработчики материла оптимистично считают, что смогут увеличить «ресурс» своего продукта как минимум в тысячу раз. Даже если у них все получится, решение другого недостатка пока остается под вопросом. Стирать одежду на основе таких нанониток, скорее всего, будет нельзя.

Наноиглы для восстановления внутренних органов

Нанопластыри, о которых мы говорили выше, разработаны специально для замены игл. А что, если сами иглы были бы размером всего несколько нанометров? В таком случае они могли бы изменить наше представление о хирургии, или по крайней мере существенно ее улучшить.

Совсем недавно ученые провели успешные лабораторные испытания на мышах. С помощью крошечных игл исследователи смогли ввести в организмы грызунов нуклеиновые кислоты, способствующие регенерации органов и нервных клеток и тем самым восстанавливающие утерянную работоспособность. Когда иглы выполняют свою функцию, они остаются в организме и через несколько дней полностью в нем разлагаются. При этом никаких побочных эффектов во время операций по восстановлению кровеносных сосудов мышц спины грызунов с использованием этих специальных наноигл ученые не обнаружили.

Если брать в расчет человеческие случаи, то такие наноиглы могут использоваться для доставки необходимых средств в организм человека, например, при трансплантации органов. Специальные вещества подготовят окружающие ткани вокруг трансплантируемого органа к быстрому восстановлению и исключат возможность отторжения.

Трехмерная химическая печать

Химик Иллинойского университета Мартин Берк – настоящий Вилли Вонка из мира химии. Используя коллекцию молекул «строительного материала» самого разного назначения, он может создавать огромное число различных химических веществ, наделенных всевозможными «удивительными и при этом естественными свойствами». Например, одним из таких веществ является ратанин, который можно найти только в очень редком перуанском цветке.

Потенциал синтезирования веществ настолько огромен, что позволит производить молекулы, использующиеся в медицине, при создании LED-диодов, ячеек солнечных батарей и тех химических элементов, на синтезирование которых даже у самых лучших химиков планеты уходили годы.

Возможности нынешнего прототипа трехмерного химического принтера пока ограничены. Он способен создавать только новые лекарственные средства. Однако Берк надеется, что однажды он сможет создать потребительскую версию своего удивительного устройства, которая будет обладать куда большими возможностями. Вполне возможно, что в будущем такие принтеры будут выступать в роли своеобразных домашних фармацевтов.

Представляет ли нанотехнология угрозу здоровью человека или окружающей среде?

Информации о негативном воздействии наночасттиц не так уж и много. В 2003 г. в одном из исследований было показано, что углеродные нанотрубки могут повреждать легкие у мышей и крыс. Исследование 2004 г. показало, что фуллерены могут накапливаться и вызывать повреждения мозга у рыб. Но в обоих исследованиях были использованы большие порции вещества при необычных условиях. По словам одного из экспертов, химика Кристена Кулиновски (США), «было бы целесообразно ограничить воздействие этих наночастиц, невзирая на то, что в настоящее время информация об их угрозе человеческому здоровью отсутствует».

Некоторые комментаторы высказываются также относительно того, что широкое использование нанотехнологий может привести к рискам социального и этического плана. Так, к примеру, если использование нанотехнологий инициирует новую промышленную революцию, то это приведет к потере рабочих мест. Более того, нанотехнологии могут изменить представление о человеке, поскольку их использование поможет продлевать жизнь и существенно повышать устойчивость организма. «Никто не может отрицать, что широкое распространение мобильных телефонов и интернета привело к огромным изменениям в обществе», – говорит Кристен Кулиновски. – Кто возьмет на себя смелость сказать, что нанотехнологии не окажут более сильного воздействия на общество в ближайшие годы?»

Место России среди стран, разрабатывающих и производящих нанотехнологии

Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 – 2010 годы» составит 27,7 млрд.руб.

В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется «Отчет о перспективах нанотехнологій», о российских вложениях написано дословно следующее: «Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США».

В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.

Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок. В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.

Нанотехнологии в искусстве

Ряд произведений американской художницы Наташи Вита-Мор касается нанотехнологической тематики.

В современном искусстве возникло новое направление «наноарт» (наноискусство) – вид искусства, связанный с созданием художником скульптур (композиций) микро- и нано-размеров (10 −6 и 10 −9 м, соответственно) под действием химических или физических процессов обработки материалов, фотографированием полученных нано-образов с помощью электронного микроскопа и обработкой черно-белых фотографий в графическом редакторе.

В широко известном произведении русского писателя Н. Лескова «Левша» (1881 год) есть любопытный фрагмент: «Если бы, – говорит, – был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, – говорит, – увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал». Увеличение в 5 000 000 раз обеспечивают современные электронные и атомно-силовые микроскопы, считающиеся основными инструментами нанотехнологий. Таким образом, литературного героя Левшу можно считать первым в истории «нанотехнологом».

Изложенные Фейнманом в лекции 1959 г. «Там внизу много места» идеи о способах создания и применения наноманипуляторов совпадают практически текстуально с фантастическим рассказом известного советского писателя Бориса Житкова «Микроруки», опубликованным в 1931 году. Некоторые отрицательные последствия неконтролируемого развития нанотехнологий описаны в произведениях М. Крайтона («Рой»), С. Лема («Осмотр на месте» и «Мир на Земле»), С. Лукьяненко («Нечего делить»).

Главный герой романа «Трансчеловек» Ю. Никитина – руководитель нанотехнологической корпорации и первый человек, испытавший на себе действие медицинских нанороботов.

В научно-фантастических сериалах «Звёздные врата: SG-1» и «Звёздные врата: Атлантида» одними из самых технически развитых рас являются две расы «репликаторов», возникших в результате неудачных опытов с использованием и описанием различных вариантов применения нанотехнологий. В фильме «День, когда Земля остановилась» с Киану Ривзом в главной роли, инопланетная цивилизация выносит человечеству смертный приговор и чуть было не уничтожает всё на планете при помощи самовоспроизводящихся нанорепликантов-жуков, пожирающих всё на своём пути.

В последнее время можно часто слышать слово «нанотехнологии». Если спросить любого учёного, что это такое, и для чего нужны нанотехнологии, ответ будет краток: «Нанотехнологии изменяют привычные свойства вещества. Они преображают мир и делают его лучше».

Учёные утверждают, что нанотехнологии найдут применение в очень многих областях деятельности: в промышленности, в энергетике, в исследованиях космоса, в медицине и во многом другом. Например, крохотные нанороботы, способные проникнуть в любую клетку человеческого организма, смогут быстро лечить те или иные болезни и производить такие операции, которые не под силу даже самому опытному хирургу.

Благодаря нанотехнологиям появятся «умные дома». В них человеку практически не надо будет заниматься скучными бытовыми хлопотами. На себя эти обязанности возьмут «умные вещи» и «умная пыль». Люда станут носить одежду, которая не пачкается, более того, сообщает хозяину, что, например, пора обедать или принять душ.

Нанотехнологии позволят изобрести компьютерную технику и мобильные телефоны, которые можно будет складывать, как носовой платок, и носить в кармане.

Словом, учёные-нанотехнологи действительно намерены существенно преобразить жизнь человека.

Что такое нанотехнологии

Что же такое нанотехнологии? И как именно они позволяют менять свойства вещей?

Слово «нанотехнологии» состоит из двух слов - «нано» и «технологии».

«Нано» - греческое слово, означающее одну миллиардную часть чего-нибудь, например, метра. Размер одного атома немного меньше нанометра. А нанометр настолько меньше метра, насколько обыкновенная горошина меньше земною шара. Если бы рост человека был один нанометр, то толщина листа бумаги показалась бы человеку равной расстоянию от Москвы до города Тулы, а это целых 170 километров!

Слово «технологии» означает создание из доступных материалов того, что необходимо человеку.

А нанотехнологии - это создание того, что нужно человеку, из атомов и групп атомов (они называются наночастицами) при помощи специальных приборов.

Существует два способа получения наночастиц.

Первый, более простой, метод - «сверху вниз». Исходный материал измельчают разнообразными способами до тех пор, пока частица не станет наноразмерной.

Второй - получение наночастиц путём объединения отдельных атомов, «снизу вверх». Это более сложный способ, но именно за ним учёные видят будущее нанотехнодогий.

Первый способ получения наночастиц - измельчение материала до тех пор, пока частица не станет наноразмерной. Второй способ получения наночастиц - объединение атомов в наночастицу различными способами.

Получение наночастиц этим способом напоминает работу с конструктором. Только в качестве деталей используются атомы и молекулы, из которых учёные создают новые наноматериалы и наноустройства.

Разговоры о нанотехнологиях сейчас на устах каждого ученого. Но как и почему они появились? Кто их придумал? Давайте обратимся к авторитетным источникам.

В сущности, еще даже нет определения слове «нанотехнология», но это слово успешно применяют, когда говорят о чем-то миниатюрном. Точнее — сверхминиатюрном: о машинах, состоящих из отдельных атомов, о нанотрубках из графена, сингулярности и выпуску антропоморфных роботов на основе наноматериалов…

Сейчас принято считать, что термин и обозначение направленности нанотехнологий берут свое начало в докладе Ричарда Феймана «На дне много места». Тогда Фейнман удивил слушателей общими рассуждениями о том, что будет, если только начавшаяся миниатюризация электроники дойдёт до своего логического предела, «дна».

Для справки: «Английский термин « Nanotechnology » был предложен японским профессором Норио Танигучи в средине 70-х гг. прошлого века и использован в докладе «Об основных принципах нанотехнологии» (On the Basic Concept of Nanotechnology ) на международной конференции в 1974 г., т. е. задолго до начала масштабных работ в этой области. По своему смыслу он заметно шире буквального русского перевода «нанотехнология», поскольку подразумевает большую совокупность знаний, подходов, приемов, конкретных процедур и их материализованные результаты – нанопродукцию.»

На протяжении второй половины 20 века развивались как технологии миниатюризации (в микроэлектронике), так и средства наблюдения за атомами. Основные вехи микроэлектроники таковы:

  • 1947 - изобретение транзистора;
  • 1958 - появление микросхемы;
  • 1960 - технология фотолитографии, промышленное производство микросхем;
  • 1971 - первый микропроцессор фирмы «Интел» (2250 транзисторов на одной подложке);
  • 1960-2008 - действие «закона Мура» - количество компонент на единице площади подложки удваивалось каждые 2 года.


Дальнейшая миниатюризация упёрлась в пределы, задаваемые квантовой механикой. Что касается микроскопов, то интерес к ним понятен. Хотя рентгеновские изображения и помогли «увидеть» много интересного - например, двойную спираль ДНК - микрообъекты хотелось разглядеть получше.

Проследим за хронологией и здесь:

1932 - Э.Руска изобрёл просвечивающий электронный микроскоп. По принципу действия он похож на обычный оптический, только вместо фотонов - электроны, а вместо линз - магнитная катушка. Микроскоп давал увеличение в 14 раз.
1936 - Э.Мюллер предложил конструкцию автоэлектронного микроскопа с увеличением более миллиона раз. По принципу действия он похож на театр теней: на экране высвечиваются изображения микрообъектов, расположенных на острие иглы, излучающей электроны. Однако, дефекты иглы и химические реакции не давали возможности получить изображение.
1939 - Просвечивающий электронный микроскоп Руски стал увеличивать в 30 тысяч раз.
1951 - Мюллер изобрёл автоионный микроскоп и получил изображение атомов на острие иглы.
1955 - Первое в мире изображение отдельного атома, получено автоионным микроскопом.
1957 - Первое в мире изображение отдельной молекулы, полученное автоэлектронным микроскопом.
1970 - Изображение отдельного атома, полученное просвечивающим электронным микроскопом.
1979 - Бинниг и Рорер (Цюрих, IBM) изобрели сканирующий туннельный микроскоп с разрешающей способностью не хуже вышеупомянутых.

Но главное в другом — «в мире» простейших частиц вступает в действие квантовая механика, а значит наблюдение невозможно отделить от взаимодействия. Проще говоря очень быстро оказалось, что микроскопом можно цеплять и двигать молекулы, или менять их электрическое сопротивление простым надавливанием.

В конце 1989 года научный мир облетела сенсация: человек научился манипулировать отдельными атомами. Сотрудник IBM Дональд Эйглер, работавший в Калифорнии, написал на поверхности металла название своей фирмы 35 атомами ксенона. Эта картинка, впоследствии растиражированная мировыми СМИ и уже осевшая на страницах школьных учебников, ознаменовала рождение нанотехнологии.

О повторении успеха сразу же (в 1991) отчитались японские ученые, создавшие надпись «PEACE ”91 HCRL” (Мир в 1991 году Центральная исследовательская лаборатория HITACHI). Правда делали они эту надпись целый год и вовсе не методом размещения атомов на поверхности, а наоборот – выковыривали ненужные атомы из золотой подложки.

Реально повторить достижение Эйглера удалось лишь в 1996 году – в цюрихской лаборатории IBM. По состоянию на 1995 год в мире было лишь пять лабораторий занимающихся манипуляцией с атомами. Три в США, одна в Японии и одна в Европе. При этом европейская и японские лаборатории принадлежали IBM, то есть тоже по факту были американскими.

Что оставалось европейским политикам и бюрократам делать в такой ситуации? Только кричать о пагубности прогресса для окружающей среды и опасности новых технологий в американских руках.

Где используются нанотехнологии? Нанотехнологии в современном мире используют в очень многих отраслях, а в каких именно Вы узнаете в этой статье. Доклад о нанотехнологиях содержит много полезной информации.

Где применяются нанотехнологии?

Достижения нанотехнологий применяется в таких отраслях:

Применение нанотехнологий в медицине: обеспечивают ускорение разработки новых лекарств, создают высокоэффективные формы и способы доставки лекарственных средств к очагу заболевания, предлагают новые средства диагностики, позволяют провести нетравматические операции

Нанотехнологии стали применять в производстве модной одежды недавно. Некоторые из модельеров начали сотрудничество с учеными для производства моделей, так называемой, «функциональной одежды». Она будет отличаться от привычной нам не только внешним видом, но и свойствами ткани из которой она изготовлена.
Одежда из углеродных нанотрубок не требует стирки, в ней невозможно заболеть, она не пропускает вредные газы и защищает от современной экологии. 1 кв. метр ткани стоит примерно 10тыс. $

Применение нанотехнологий в строительстве . Наноматериалы для строительства, автономные источники энергии на мощных солнечных батареях, нанофильтры для очистки воды и воздуха — эти достижения нанотехнологий должны сделать- и уже делают! — наши дома стали удобнее, надежнее, безопаснее. Добавление наночастиц (в том числе углеродных нанотрубок) в бетон делает его в несколько раз прочнее. Разрабатываются нанопокрытия, защищающие бетонные конструкции от воды. Сталь, важнейший строительный материал, тоже становится гораздо прочнее при добавлении наночастиц ванадия и молибдена. Самоочищающееся стекло с наночастицами двуокиси титана уже выпускается промышленностью. В будущем нанопленочные покрытия для стекла будут оптимально регулировать потоки света и тепла, идущие через окна. Для защиты зданий от огня нанотехнологий предлагают как новые негорючие материалы (например, изоляцию кабелей, содержащую наночастицы глины), так и «умные» сети сверхчувствительных нанодатчиков возгорания. Обои с покрытием из наночастиц окиси цинка помогут очистить помещение от бактерий. Что же касается домашней техники — холодильников, телевизоров, сантехники, осветительных приборов, кухонного оборудования — здесь поле приложений для нанотехнологий неисчерпаемо.

Наноматериалы в промышленности В настоящий момент наноматериалы являются наименее токсичными и наиболее биосовместимыми с живой клеткой (человека, растения, животного). Производимые наноматериалы находят качественное применение практически в любой отрасли:

  • топливной (топливные катализаторы, повышение октанового числа, минимизация выхлопов);
  • косметической (обогащение микроэлементами, бактерицидные свойства);
  • текстильной, обувной (бактерицидные и целебные свойства одежды и обуви);
  • лакокрасочной (бактерицидные лаки и краски, особые покрытия);
  • кожевенной (противогрибковая обработка кожи);
  • медицинской (медпрепараты нового поколения, нановитаминные комплексы микроэлементов);
  • в агропромышленном комплексе (наноудобрения, кормовые добавки, хранение продукции);
  • пищевой промышленности (биологически активные добавки, витаминные комплексы);
  • а также: целлюлозно-бумажной, химической, коммунальной, электронике, энергетике, машиностроении в качестве дополнительного сырьевого компонента придающего дополнительные свойства изделиям.

Применение нанотехнологий в машиностроении
Автомобильная отрасль — одна из тех. что первыми воспринимают инновации, в том числе нанотехнологические. Уже сегодня в этой отрасли мировой оборот продукции с применением нанотехнологий оценивают более чем в 8 миллиардов долларов. Вот лишь несколько примеров того, как наноинновации преобразуют привычные элементы автомобиля. Композитные материалы позволяют делать кузовные детали прочными и легкими. Добавление наночастиц в топливо увеличивает эффективность его сгорания, одновременно снижается количество выбрасываемых в атмосферу вредных веществ. Находящиеся в масле наночастицы способствуют увеличению ресурса двигателя: по некоторым данным, применение таких добавок снижает износ деталей в 1.5-2 раза. Наночастицы углерода (так называемый черный углерод) добавляют в шинную резину, и ее прочность заметно повышается. Жидкости, насыщенные магнитными наночастицами, испытываются для использования в амортизаторах с регулируемой жесткостью. Нанотехнологий могут сделать автомобиль совсем иным даже внешне.

Наноматериалы в солнечных батареях – новые перспективны альтернативной энергетики Исчерпывающее обеспечение нужд человечества энергией с сохранением полного экологического равновесия, при котором возможно долгосрочное устойчивое развитие человеческого общества в гармонии с окружающей средой, можно достичь только при использовании неисчерпаемой энергии окружающей среды. В первую очередь такими источниками являются: Энергия солнечного излучения Тепловая энергия недр Земли Гравитация

Наноматериалы в атомном производстве Целенаправленные работы в области создания наноматериалов и нанотехнологий в атомной отрасли были начаты в середине прошлого столетия, практически одновременно с испытанием первого ядерного оружия в 1949 году. В настоящее время во ВНИИНМ разрабатываются технологии получения функциональных веществ и изделий с использованием нанотехнологий и наноматериалов для ядерной, термоядерной, водородной и обычной энергетики, медицинских препаратов, материалов и изделий для народного хозяйства.Одним из условий развития атомной энергетики является снижение удельного потребления природного урана при производстве энергии, что достигается в основном за счет увеличения глубины выгорания ядерного топлива. Активация процесса спекания за счет нанодобавок может явиться одним из направлений создания технологий новых видов уран-плутониевых оксидов и нитридов для ядерного топлива быстрой энергетики.

Наномедецина и химическая промышленность Направление в современной медицине основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне. ДНК-нанотехнологии - используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур. Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис-пептиды).

Робототехника Нанороботы как машины, способные точно взаимодействовать с наноразмерными объектами или способные манипулировать объектами в наномасштабе. Вследствие этого, даже крупные аппараты, такие как атомно-силовой микроскоп можно считать нанороботами, так как они производит манипуляции объектами на наноуровне. Кроме того, даже обычных роботов, которые могут перемещаться с наноразмерной точностью, можно считать нанороботами. С каждым днем их количество в мире увеличивается. Возможно в ближайшем будущем они смогут полностью или частично заменить практически всю человеческую деятельность.

В нашей стране правительство приняло программу по развитию наноиндустрии. Слово «нанотехнологии» в одночасье стало модным, СМИ живо обсуждают перспективы страны в свете развития этой многообещающей научной отрасли. А что такое нанотехнологии и чем они могут быть полезны?

Мы хорошо знаем что сантиметр – сотая доля метра, миллиметр – тысячная, а нанометр - миллиардная часть метра. Нано - обозначает миллиардную долю чего-либо.

Нанотехнологии это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, а иногда просто необыкновенные свойства, технологии изготовления сверхмикроскопических конструкций из мельчайших частиц материи.Нанотехнологии это возможность создавать новые материалы с заданными свойствами из мельчайших элементов – атомов, и со временем они кардинально изменят нашу жизнь к лучшему.

Нанотехнологии в медицине

От нанотехнологических разработок в медицине ждут революционных достижений в борьбе с раком, с особо опасными инфекциями, в ранней диагностике, в протезировании. По всем этим направлениям ведутся интенсивные исследования. Некоторые их результаты уже пришли в медицинскую практику. Вот лишь два ярких примера:

Убивая микробов и разрушая опухоль, лекарства обычно наносят удар и по здоровым органам и клеткам организма. Именно из-за этого некоторые тяжелейшие болезни до сих пор не удается надежно вылечить – лекарства приходится использовать в слишком малых дозах. Выход - доставлять нужное вещество прямо в пораженную клетку, не задевая остальные.

Для этого создаются нанокапуслы, чаще всего биологические частицы (например, липосомы), внутрь которых помещается нанодоза препарата. Ученые пытаются «настроить» капсулы на определенные виды клеток, которые они должны уничтожить, проникая через мембраны. Совсем недавно появились первые промышленные препараты такого типа для борьбы с некоторыми видами рака, другими заболеваниями.

Наночастицы помогают решить и другие проблемы с доставкой лекарств в организме. Так, человеческий мозг серьезно защищен природой от проникновения ненужных веществ по кровеносным сосудам. Однако эта защита неидеальна. Ее легко преодолевают молекулы алкоголя, кофеина, никотина и антидепрессантов, но она блокирует лекарства от тяжелых болезней самого мозга. Чтобы их ввести, приходится делать сложные операции. Сейчас испытывается новый способ доставки лекарств в мозг с помощью наночастиц. Белок, который свободно проходит «мозговой барьер», играет роль «троянского коня»: к молекулам этого белка «пристегивается» квантовая точка (нанокристалл полупроводника) и вместе с ним проникает к клеткам мозга. Пока квантовые точки лишь сигнализируют о преодолении барьера – в будущем планируется использовать их и другие наночастицы для диагностики и лечения.

Давно завершился всемирный проект расшифровки генома человека – полное определение структуры молекул ДНК, которые находятся во всех клетках нашего организма и непрерывно управляют их развитием, делением, обновлением. Однако для индивидуального назначения лекарств, для диагностики и прогноза наследственных болезней нужно расшифровать не геном вообще, а геном данного пациента. Но процесс расшифровки пока очень длителен и дорог.

Нанотехнологии предлагают интересные пути к решению этой задачи. Например, использование нанопор – когда молекула проходит через такую пору, помещенную в раствор, датчик регистрирует ее по изменению электрического сопротивления. Впрочем, очень многое можно сделать и не дожидаясь полного решения такой сложной проблемы. Уже существуют биочипы, распознающие у пациента за один анализ более двухсот «генетических синдромов», отвечающих за различные болезни.

Диагностика состояния индивидуальных живых клеток прямо в организме – еще одно поле приложения нанотехнологий. Сейчас испытываются зонды, состоящие из оптоволкна толщиной в десятки нанометров, к которому присоединен химически чувствительный наноэлемент. Зонд вводится в клетку, и по оптоволкну передает информацию о реакции чувствительного элемента. Таким путем можно исследовать в реальном времени состояние различных зон внутри клетки, получать очень важную информацию о нарушениях ее тонкой биохимии. А это – ключ к диагностике серьезных болезней на этапе, когда внешних проявлений еще нет – и когда вылечить болезнь гораздо проще.

Интересным примером является создание новых технологий секвенирования (определения нуклеотидной последовательности) молекул ДНК. Из числа таких методик следует назвать, в первую очередь, секвенирование при помощи нанопор – технологию, использующую поры для подсчета частиц от субмикронного до миллиметрового размера, суспендированных в растворе электролита. При проходе молекулы через пору изменяется электрическое сопротивление в контуре датчика. И по изменению тока регистрируется каждая новая молекула. Основная цель, которую пытаются достигнуть ученые, разрабатывающие этот метод – научиться распознавать отдельные нуклеотиды в составе РНК и ДНК.

Красота и нанотехнологии

Индустрия красоты – одна из областей, в которой новейшие технологии находят применение быстрее всего. Нанотехнологии, сравнительно недавно переставшие применяться исключительно в технических устройствах, сегодня все чаще могут быть обнаружены в продуктах косметики. Установлено, что 80 процентов всех косметических веществ, нанесенных на кожу, так на ней и остаются, вне зависимости от стоимости. Это означает, что эффект от их применения сказывается, в основном, лишь на состоянии самой верхней части кожи. Поэтому успех косметической отрасли все больше зависит от развития систем доставки активных ингредиентов в глубокие слои кожи. На помощь в решении этой проблемы, давно стоящей перед косметологами, пришли нанотехнологии. Старение кожи связано с тем, что с возрастом обновление клеток замедляется. Чтобы стимулировать рост молодых клеток, от количества которых зависит упругость кожи, ее цвет и отсутствие морщинок, необходимо воздействовать на самый глубокий, ростковый слой дермы. Он отделен от поверхности кожи барьером из роговых чешуек, скрепленных между собой липидной прослойкой. Сделать это можно лишь через межклеточные промежутки, диаметр которых ничтожно мал – не более 100 нм. Но микроскопические «ворота» – не единственное препятствие. Есть и другая сложность: вещества, заполняющие эти промежутки, «не пропускают» водорастворимые соединения. Но эти вещества, называемые липидами, можно «обмануть», если использовать нанотехнологии. Одним из решений проблемы доставки биологически активных веществ, стало создание искусственных «контейнеров», липосом, которые, во-первых, обладают малыми размерами, проникая в межклеточные промежутки, а, во-вторых, распознаются липидами как «дружественные». Липосома представляет собой коллоидную систему, в которой водное ядро окружено со всех сторон замкнутым сферическим образованием. Замаскированное таким образом водорастворимое соединение беспрепятственно проходит через липидный барьер. Косметика на основе липосом борется с первыми признаками старения кожи – повышенной сухостью, морщинами. Питательные вещества благодаря системе липосомальных комплексов способны проникать достаточно глубоко. Но, к сожалению, не настолько, чтобы существенно влиять на регенеративные процессы в коже. Мицеллы – микроскопические частицы, образующиеся в растворах и состоящие из ядра и оболочки. В зависимости от того, в каком состоянии находится раствор, из чего состоит ядро и оболочка, мицеллы могут принимать различные внешние формы. Липосомы являются одной из разновидностей мицелл.

Следующим этапом развития антивозрастной косметики стало создание наносом. Эти транспортные комплексы отличаются еще меньшими размерами по сравнению с липосомами и представляют собой шарообразные структуры с «начинкой» из витаминов, микроэлементов или других полезных веществ. Благодаря малым размерам, наносомы способны проникать в глубокие слои кожи. Но при всех своих достоинствах, наносомы не способны транспортировать биоактивные комплексы, необходимые для полноценного питания клеток. Все, на что они способны - транспортировать какое-нибудь одно вещество, например, витамин. Последние разработки в области биотехнологий позволили создавать косметические средства, способные не только проникать в зону росткового слоя дермы, но и вызывать в нем именно те процессы, которые были запрограммированы в лаборатории. Косметика прицельного действия на основе нанокомплексов не только переносит питательные вещества в глубокие слои кожи – в ее арсенале, в зависимости от поставленной задачи, имеются увлажнение, очищение, удаление токсинов, разглаживание рубцов, шрамов и многое другое. Причем нанокомплексы создаются так, что высвобождение биоактивных веществ происходит именно на том участке кожи, где в них есть потребность. Главное преимущество такой косметики - целенаправленная профилактика старения. Ведь корректировать процессы, происходящие в коже, гораздо эффективнее, чем бороться с результатами этих процессов.