Молекулярная масса углеводородов с12 с19. Алифатические углеводороды - это что такое? II

Углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле C n H 2 n +2 .
В молекулах алканов все атомы углерода находятся в состоянии sр 3 -гибридизации. Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторонней треугольной пирамиды - тетраэдра. Углы между орбиталями равны 109° 28′.

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), например, в молекуле н -пентана.

Особо стоит напомнить о связях в молекулах алканов. Все связи в молекулах предельных углеводородов одинарные. Перекрывание происходит по оси,
соединяющей ядра атомов, т. е. это σ-связи. Связи углерод - углерод являются неполярными и плохо поляризуемыми. Длина С-С связи в алканах равна 0,154 нм (1,54 10 — 10 м). Связи С-Н несколько короче. Электронная плотность немного смещена в сторону более электроотрицательного атома углерода, т. е. связь С-Н является слабополярной.

Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде, не вступают во взаимодействие с заряженными частицами (ионами). Наиболее характерными для алканов являются реакции, протекающие с участием свободных радикалов.

Гомологический ряд метана

Гомологи - вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН 2 .

Изомерия и номенклатура

Для алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкан, для которого характерны структурные изомеры, - это бутан.

Основы номенклатуры

1. Выбор главной цепи. Формирование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.
2. Нумерация атомов главной цепи. Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: метил (-СН 3), затем этил (-СН 2 -СН 3), пропил (-СН 2 -СН 2 -СН 3) и т. д.
Обратите внимание на то, что название заместителя формируется заменой суффикса -ан на суффикс —ил в названии соответствующего алкана.
3. Формирование названия . В начале названия указывают цифры - номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди - два, три - три, тетра - четыре, пента - пять) и название заместителя (метил, этил, пропил). Затем без пробелов и дефисов - название главной цепи. Главная цепь называется как углеводород - член гомологического ряда метана (метан СН 4 , этан С 2 Н 6 , пропан C 3 H 8 , С 4 Н 10, пентан С 5 Н 12 , гексан С 6 Н 14 , гептан C 7 H 16, октан C 8 H 18, нонан С 9 Н 20, декан С 10 Н 22).

Физические свойства алканов

Первые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, определяется запахом меркаптанов - серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах для того, чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).
Углеводороды состава от С 4 Н 12 до С 15 Н 32 - жидкости; более тяжелые углеводороды - твердые вещества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства алканов

Реакции замещения.
Наиболее характерными для алканов являются реакции свободнорадикального замещения, в ходе которого атом водорода замещается на атом галогена или какую-либо группу. Приведем уравнения характерных реакций галогенирования:


В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.
Реакция дегидрирования (отщепления водорода) .
В ходе пропускания алканов над катализатором (Pt, Ni, А1 2 0 3 , Сг 2 0 3) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:


Реакции, сопровождающиеся разрушением углеродной цепи.
Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.
1. Горение предельных углеводородов - это свободнорадикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива:

В общем виде реакцию горения алканов можно записать следующим образом:

2. Термическое расщепление углеводородов.

Процесс протекает по свободнорадикальному механизму. Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием молекулы алкана и молекулы алкена:

Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

3. Пиролиз . При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества:

При нагревании до температуры 1500 °С возможно образование ацетилена:

4. Изомеризация . При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:

5. Ароматизация . Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод - углерод) связей и слабополярных С-Н (углерод - водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

ОПРЕДЕЛЕНИЕ

Алканами называются насыщенные углеводороды, молекулы которых состоят из атомов углерода и водорода, связанных между собой только σ-связями.

В обычных условиях (при 25 o С и атмосферном давлении) первые четыре члена гомологического ряда алканов (C 1 — C 4) - газы. Нормальные алканы от пентана до гептадекана (С 5 - С 17) - жидкости, начиная с С 18 и выше - твердые вещества. По мере увеличения относительной молекулярной массы, возрастают температуры кипения и плавления алканов. При одинаковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температуры кипения, чем нормальные алканы. Строение молекулы алканов на примере метана приведено на рис. 1.

Рис. 1. Строение молекулы метана.

Алканы практически не растворимы в воде, так как их молекулы малополярны и не взаимодействуют с молекулами воды. Жидкие алканы легко смешиваются друг с другом. Они хорошо растворяются в неполярных органических растворителях, таких как бензол, тетрахлорметан, диэтиловый эфир и др.

Получение алканов

Основные источники различных предельных углеводородов, содержащих до 40 атомов углерода, — нефть и природный газ. Алканы с небольшим числом атомов углерода (1 - 10) можно выделить фракционной перегонкой природного газа или бензиновой фракции нефти.

Различают промышленные (I) и лабораторные (II) способы получения алканов.

C + H 2 → CH 4 (kat = Ni, t 0);

CO + 3H 2 → CH 4 + H 2 O (kat = Ni, t 0 = 200 - 300);

CO 2 + 4H 2 → CH 4 + 2H 2 O (kat, t 0).

— гидрирование непредельных углеводородов

CH 3 -CH=CH 2 + H 2 →CH 3 -CH 2 -CH 3 (kat = Ni, t 0);

— восстановление галогеналканов

C 2 H 5 I + HI →C 2 H 6 + I 2 (t 0);

— реакции щелочного плавления солей одноосновных органических кислот

C 2 H 5 -COONa + NaOH→ C 2 H 6 + Na 2 CO 3 (t 0);

— взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

2C 2 H 5 Br + 2Na → CH 3 -CH 2 -CH 2 -CH 3 + 2NaBr;

— электролиз солей одноосновных органических кислот

2C 2 H 5 COONa + 2H 2 O→H 2 + 2NaOH + C 4 H 10 + 2CO 2 ;

К(-): 2H 2 O + 2e → H 2 + 2OH — ;

A(+):2C 2 H 5 COO — -2e → 2C 2 H 5 COO + → 2C 2 H 5 + + 2CO 2 .

Химические свойства алканов

Алканы относятся к наименее реакционноспособным органическим соединениям, что объясняется их строением.

Алканы в обычных условиях не реагируют с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Для алканов наиболее характерны реакции, протекающие по радикальному механизму. Энергетически более выгоден гомолитический разрыв связей C-H и C-C, чем их гетеролитический разрыв.

Реакции радикального замещения наиболее легко протекают по третичному, дплее - по вторичному и в последнюю очередь по первичному атому углерода.

Все химические превращения алканов протекают с расщеплением:

1) cвязей C-H

— галогенирование (S R)

CH 4 + Cl 2 → CH 3 Cl + HCl (hv );

CH 3 -CH 2 -CH 3 + Br 2 → CH 3 -CHBr-CH 3 + HBr (hv ).

— нитрование (S R)

CH 3 -C(CH 3)H-CH 3 + HONO 2 (dilute) → CH 3 -C(NO 2)H-CH 3 + H 2 O (t 0).

— сульфохлорирование (S R)

R-H + SO 2 + Cl 2 → RSO 2 Cl + HCl (hv ).

— дегидрирование

CH 3 -CH 3 → CH 2 =CH 2 + H 2 (kat = Ni, t 0).

— дегидроциклизация

CH 3 (CH 2) 4 CH 3 → C 6 H 6 + 4H 2 (kat = Cr 2 O 3 , t 0).

2) связей C-H и C-C

— изомеризация (внутримолекулярная перегруппировка)

CH 3 -CH 2 -CH 2 -CH 3 →CH 3 -C(CH 3)H-CH 3 (kat=AlCl 3 , t 0).

— окисление

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 → 4CH 3 COOH + 2H 2 O (t 0 , p);

C n H 2n+2 + (1,5n + 0,5)O 2 → nCO 2 + (n+1) H 2 O (t 0).

Применение алканов

Алканы нашли применение в различных отраслях промышленности. Рассмотрим подробнее, на примере некоторых представителей гомологического ряда, а также смесей алканов.

Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений - спиртов, альдегидов, кислот. Пропан применяется как автомобильное топливо. Бутан используется для получения бутадиена, являющегося сырьем для производства синтетического каучука.

Смесь жидких и твердых алканов до С 25 , называемая вазелином применяется в медицине как основа мазей. Смесь твердых алканов С 18 - С 25 (парафин) применяется для пропитки различных материалов (бумага, ткани, древесина) для придания им гидрофобных свойств, т.е. несмачиваемости водой. В медицине используется для физиотерапевтическихпроцедур (парафинолечение).

Примеры решения задач

ПРИМЕР 1

Задание При хлорировании метана получено 1,54 г соединения, плотность паров по воздуху которого равна 5,31. Рассчитайте массу диоксида марганца MnO 2 , которая потребуется для получения хлора, если соотношение объемов метана и хлора, введенных в реакцию равно 1:2.
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

Найдем молярную массу газа, образующегося при хлорировании метана:

M gas = 29 ×D air (gas) = 29 × 5,31 = 154 г/моль.

Это тетрахлорметан - CCl 4 . Запишем уравнение реакции и расставим стехиометрические коэффициенты:

CH 4 + 4Cl 2 = CCl 4 + 4HCl.

Рассчитаем количество вещества тетрахлорметана:

n(CCl 4) = m(CCl 4) / M(CCl 4);

n(CCl 4) = 1,54 / 154 = 0,01 моль.

Согласно уравнению реакции n(CCl 4) : n(CH 4) = 1: 1, значит

n(CH 4) = n(CCl 4) = 0,01 моль.

Тогда, количество вещества хлора должно быть равно n(Cl 2) = 2 × 4 n(CH 4), т.е. n(Cl 2) = 8 × 0,01 = 0,08 моль.

Запишем уравнение реакции получения хлора:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O.

Число моль диоксида марганца равно 0,08 моль, т.к. n(Cl 2) :n(MnO 2) = 1: 1. Найдем массу диоксида марганца:

m(MnO 2) = n(MnO 2) ×M(MnO 2);

M(MnO 2) = Ar(Mn) + 2×Ar(O) = 55 + 2×16 = 87 г/моль;

m(MnO 2) = 0,08 × 87 = 10,4 г.

Ответ Масса диоксида марганца равна 10,4 г.

ПРИМЕР 2

Задание Установите молекулярную формулу трихлоралкана, массовая доля хлора в котором составляет 72,20%. Составьте структурные формулы всех возможных изомеров и дайте названия веществ по заместительной номенклатуре ИЮПАК.
Ответ Запишем общую формулу трихлоралкеана:

C n H 2 n -1 Cl 3 .

По формуле

ω(Cl) = 3×Ar(Cl) / Mr(C n H 2 n -1 Cl 3) × 100%

рассчитаем молекулярную массу трихлоралкана:

Mr(C n H 2 n -1 Cl 3) = 3 × 35,5 / 72,20 × 100% = 147,5.

Найдем значение n:

12n + 2n - 1 + 35,5×3 = 147,5;

Следовательно, формула трихлоралкана C 3 H 5 Cl 3 .

Составим структурные формулы изомеров: 1,2,3-трихлорпропан (1), 1,1,2-трихлорпропан (2), 1,1,3-трихлорпропан (3), 1,1,1-трихлорпропан (4) и 1,2,2-трихлорпропан (5).

CH 2 Cl-CHCl-CH 2 Cl (1);

CHCl 2 -CHCl-CH 3 (2);

CHCl 2 -CH 2 -CH 2 Cl (3);

CCl 3 -CH 2 -CH 3 (4);

Молекулы которых содержат только одинарную связь. К ним относятся алканы и циклопарафины, их особенности будут рассмотрены в нашем материале.

Общая формула алканов

Представители данного класса характеризуются общей формулой СпН2п+2. К парафинам относят все соединения, имеющие открытую цепь, где атомы соединяются между собой простыми связями. В связи с тем, что при нормальных условиях алифатические углеводороды это малоактивные соединения, они получили свое название «парафины». Выясним некоторые особенности строения представителей данного класса, характер связи в молекулах, отрасли применения.

Краткая характеристика метана

В качестве простейшего представителя данного класса можно упомянуть метан. Именно он начинает алифатический ряд углеводородов. Выявим его отличительные особенности.

Метан является при нормальных условиях газообразным веществом, не имеющим запаха и цвета. Образуется это соединение в природе при разложении без присутствия кислорода воздуха животных и растительных организмов. К примеру, он обнаружен в природном газе, поэтому в настоящее время в больших количествах используется в качестве топлива на производстве и в быту.

Какую химическую связь имеют эти углеводороды? Алифатические, предельные органические соединения являются ковалентными полярными молекулами.

Молекула метана имеет тетраэдрическую форму молекулы, тип гибридизации углеродных атомов в нем sp3, что соответствует валентному углу 109 градусов 28 минут. Именно по этой причине алифатические углеводороды - это химически малоактивные соединения.

Особенности гомологов метана

Помимо метана в природном газе и нефти содержатся другие углеводороды, которые имеют с ним сходное строение. Четыре первых представителя гомологического ряда парафинов находятся в газообразном агрегатном состоянии, имеют незначительную растворимость в воде.

По мере повышения величины наблюдается увеличение температур кипения и плавления СхНу. Между отдельными представителями ряда есть определенная разница СН2, которая называется гомологической разностью. Она является прямым подтверждением принадлежности соединения к этому органическому ряду.

Все алифатические углеводороды - это вещества, хорошо растворимые в органических растворителях.

Изомерия ряда

Для представителей ряда парафинов характерна изомерия углеродного скелета. Она объясняется возможностью пространственного вращения углеродного атома вокруг химических связей. Например, для соединения состава С4Н10 можно взять углеводород с прямым углеродным скелетом - бутаном. В качестве структурного изомера будет выступать 2-метилпропан, имеющий разветвленное строение.

Среди типичных химических свойств, характерных для парафинов, необходимо отметить Насыщенность связей объясняет сложность протекания реакции, ее радикальный механизм. Для того чтобы получить галогенопроизводные алифатических углеводородов, необходимо провести реакцию галогенирования, протекающую при наличии УФ-излучения. Цепной характер этого взаимодействия наблюдается у всех представителей данного ряда. Образующиеся продукты называют галогенпроизводными. Они широко используются в химической промышленности в качестве органических растворителей.

Кроме того, все алифатические и ароматические углеводороды горят при наличии кислорода, образуя воду и углекислый газ. В зависимости от процентного содержания в молекуле углерода выделяется разное количество теплоты. Независимо от принадлежности к классу органических соединений, все процессы горения являются экзотермическими реакциями, используются в быту и промышленности.

Практическое применение имеет и дегидрирование метана (отщепление водорода). В результате этого процесса образуется ацетилен, являющийся ценным химическим сырьем.

и хлорпроизводных алканов

Дихлорметан, хлороформ, тетрахлометан - жидкости, являющиеся отличными Хлороформ и йодоформ применяют в современной медицине. Разложение метана является одним из промышленных способов получения сажи, необходимой для изготовления типографской краски. Метан считается основным источником получения в химической промышленности газообразного водорода, идущего на производство аммиака, а также на синтез многочисленных органических веществ.

Ненасыщенные углеводороды

Непредельные алифатические углеводороды - это представители ряда этилена и ацетилена. Проанализируем их основные свойства и применение. Для алкенов характерно наличие двойной связи, поэтому общая формула ряда имеет вид СпН2п.

Учитывая непредельный характер этих веществ, можно отметить, что они вступают в гидрирования, галогенирования, гидратации, гидрогалогенирования. Кроме того, представители ряда этилена способны к полимеризации. Именно эта их особенность делает представителей данного класса востребованными в современном химическом производстве. Полиэтилен и полипропилен - вещества, составляющие основу полимерной промышленности.

Ацетилен - первый представитель ряда, имеющего общую формулу СпН2п-2. Среди отличительных особенностей этих соединений можно выделить наличие тройной связи. Ее присутствие поясняет протекание реакций соединения с галогенами, водой, галогеноводородом, водородом. Если тройная связь в таких соединениях располагается в первом положении, то для алкинов характерна качественная реакция замещения с комплексной солью серебра. Именно эта способность является качественной реакцией на алкин, используется для обнаружения его в смеси с алкеном и алканом.

Ароматические углеводороды являются циклическими непредельными соединениями, поэтому не считаются алифатическими соединениями.

Заключение

Несмотря на различия по количественному составу, существующие у представителей предельных и непредельных алифатических соединений, они сходны по качественному показателю, содержат в молекулах углерод и водород. Отличия в количественном составе (различные общие формулы) у представителей насыщенных и ненасыщенных СхНу объясняют разницу в механизмах реакций получения различных продуктов.

Именно поэтому представители всех классов таких соединений вступают в реакции горения, образуя углекислый газ, воду, выделяя определенное количество тепловой энергии, что делает их востребованными в качестве топлива в быту и промышленности.

В соответствии со статьей 4 1 Федерального закона "Об охране окружающей среды" утвердить прилагаемый перечень загрязняющих веществ, в отношении которых применяются меры государственного регулирования в области охраны окружающей среды.

Председатель Правительства
Российской Федерации
Д.Медведев

Перечень загрязняющих веществ, в отношении которых применяются меры государственного регулирования в области охраны окружающей среды

I. Для атмосферного воздуха

1. Азота диоксид
2. Азота оксид
3. Азотная кислота
4. Аммиак
5. Аммиачная селитра (аммоний нитрат)
6. Барий и его соли (в пересчете на барий)
7. Бензапирен
8. Борная кислота (ортоборная кислота)
9. Ванадия пяти оксид
10. Взвешенные частицы РМ10
11. Взвешенные частицы РМ2,5
12. Взвешенные вещества
13. Водород бромистый (гидробромид)
14. Водород мышьяковистый (арсин)
15. Водород фосфористый (фосфин)
16. Водород цианистый
17. Гексафторид серы
18. Диалюминий триоксид (в пересчете на алюминий)
19. Диоксины (полихлорированные дибензо-п-диоксины и дибензофураны) в пересчете на 2,3,7,8-тетрахлордибензо-1,4-диоксин
20. Диэтилртуть (в пересчете на ртуть)
21. Железа трихлорид (в пересчете на железо)
22. Зола твердого топлива
23. Зола ТЭС мазутная (в пересчете на ванадий)
24. Кадмий и его соединения
25. Карбонат натрия (динатрий карбонат)
26. Кислота терефталевая
27. Кобальт и его соединения (кобальта оксид, соли кобальта в пересчете на кобальт)
28. Никель, оксид никеля (в пересчете на никель)
29. Никель растворимые соли (в пересчете на никель)
30. Магний оксид
31. Марганец и его соединения
32. Медь, оксид меди, сульфат меди, хлорид меди (в пересчете на медь)
33. Метан
34. Метилмеркаптан, этилмеркаптан
35. Мышьяк и его соединения, кроме водорода мышьяковистого
36. Озон
37. Пыль неорганическая с содержанием кремния менее 20, 20-70, а также более 70 процентов
38. Ртуть и ее соединения, кроме диэтилртути
39. Свинец и его соединения, кроме тетраэтилсвинца, в пересчете на свинец
40. Сероводород
41. Сероуглерод
42. Серная кислота
43. Серы диоксид
44. Теллура диоксид
45. Тетраэтилсвинец
46. Углерода оксид
47. Фосген
48. Фосфорный ангидрид (дифосфор пентаоксид)
49. Фториды газообразные (гидрофторид, кремний тетрафторид) (в пересчете на фтор)
50. Фториды твердые
51. Фтористый водород, растворимые фториды
52. Хлор
53. Хлористый водород
54. Хлоропрен
55. Хром (Cr 6+)

Летучие органические соединения (ЛОС) (кроме метана)

Предельные углеводороды

56. Углеводороды предельные С1-С-5 (исключая метан)
57. Углеводороды предельные С6-С10
58. Углеводороды предельные С12-С-19
59. Циклогексан

Непредельные углеводороды

60. Амилены (смесь изомеров)
61. Бутилен
62. 1,3-бутадиен (дивинил)
63. Гептен
64. Пропилен
65. Этилен

Ароматические углеводороды

66. Альфа-метилстирол
67. Бензол
68. Диметилбензол (ксилол) (смесь мета-, орто- и параизомеров)
69. Изопропилбензол (кумол)
70. Метилбензол (толуол)
71. Растворитель мебельный (АМР-3) (контроль по толуолу)
72. 1,3,5-Триметилбензол (мезитилен)
73. Фенол
74. Этилбензол (стирол)

Ароматические полициклические углеводороды

75. Нафталин

Галогенопроизводные углеводороды

76. Бромбензол
77. 1-Бромгептан (гептил бромистый)
78. 1-Бромдекан (децил бромистый)
79. 1-Бром-3-метилбутан (изоамил бромистый)
80. 1-Бром-2-метилпропан (изобутил бромистый)
81. 1-Бромпентан (амил бромистый)
82. 1-Бромпропан (пропил бромистый)
83. 2-Бромпропан (изопропил бромистый)
84. Дихлорэтан
85. Дихлорфторметан (фреон 21)
86. Дифторхлорметан (фреон 22)
87. 1,2-Дихлорпропан
88. Метилен хлористый
89. Тетрахлорметан
90. Тетрахлорэтилен (перхлорэтилен)
91. Тетрафторэтилен
92. Трихлорметан (хлороформ)
93. Трихлорэтилен
94. Трибромметан (бромоформ)
95. Углерод четыреххлористый
96. Хлорбензол
97. Хлорэтан (этил хлористый)
98. Эпихлоргидрин

Спирты и фенолы

99. Гидроксиметилбензол (крезол, смесь изомеров: орто-, мета-, пара-)
100. Спирт амиловый
101. Спирт бутиловый
102. Спирт изобутиловый
103. Спирт изооктиловый
104. Спирт изопропиловый
105. Спирт метиловый
106. Спирт пропиловый
107. Спирт этиловый
108. Циклогексанол

Простые эфиры

109. Диметиловый эфир терефталевой кислоты
110. Динил (смесь 25 процентов дифенила и 75 процентов дифенилоксида)
111. Диэтиловый эфир
112. Метилаль (диметоксиметан)
113. Моноизобутиловый эфир этиленгликоля (бутилцеллозольв)

Сложные эфиры (кроме эфиров фосфорной кислоты)

114. Бутилакрилат (бутиловый эфир акриловой кислоты)
115. Бутилацетат
116. Винилацетат
117. Метилакрилат (метилпроп-2еноат)
118. Метилацетат
119. Этилацетат

Альдегиды

120. Акролеин
121. Альдегид масляный
122. Ацетальдегид
123. Формальдегид

Кетоны

124. Ацетон
125. Ацетофенон (метилфенилкетон)
126. Метилэтилкетон
127. Растворитель древесноспиртовой марки А (ацетоноэфирный) (контроль по ацетону)
128. Растворитель древесноспиртовой марки Э (эфирноацетоновый) (контроль по ацетону)
129. Циклогексанон

Органические кислоты

130. Ангидрид малеиновый (пары, аэрозоль)
131. Ангидрид уксусный
132. Ангидрид фталевый
133. Диметилформамид
134. Эпсилон-капролактам (гексагидро-2Н-азепин-2-он)
135. Кислота акриловая (проп-2-еновая кислота)
136. Кислота валериановая
137. Кислота капроновая
138. Кислота масляная
139. Кислота пропионовая
140. Кислота уксусная
141. Кислота терефталевая
142. Кислота муравьиная

Органические окиси и перекиси

143. Гидроперекись изопропилбензола (гидроперекись кумола)
144. Пропилена окись
145. Этилена окись

146. Диметилсульфид

Амины

147. Анилин
148. Диметиламин
149. Триэтиламин

Нитросоединения

150. Нитробензол

Прочие азотосодержащие

151. Акрилонитрил
152. N, N1-Диметилацетамид
153. Толуилендиизоцианат

Технические смеси

154. Бензин (нефтяной, малосернистый в пересчете на углерод)
155. Бензин сланцевый (в пересчете на углерод)
156. Керосин
157. Минеральное масло
158. Скипидар
159. Сольвент нафта
160. Уайт-спирит

Радиоактивные изотопы в элементной форме и в виде соединений

161. Америций (Am) - 241
162. Аргон (Ar) - 41
163. Барий (Ba) - 140
164. Водород (H) - 3
165. Галлий (Ga) - 67
166. Европий (Eu) - 152
167. Европий (Eu) - 154
168. Европий (Eu) - 155
169. Железо (Fe) - 55
170. Железо (Fe) - 59
171. Золото (Au) - 198
172. Индий (In) - 111
173. Иридий (Ir) - 192
174. Йод (I) - 123
175. Йод (I) - 129
176. Йод (I) - 131
177. Йод (I) - 132
178. Йод (I) - 133
179. Йод (I) - 135
180. Калий (K) - 42
181. Кальций (Ca) - 45
182. Кальций (Ca) - 47
183. Кобальт (Co) - 57
184. Кобальт (Co) - 58
185. Кобальт (Co) - 60
186. Криптон (Kr) - 85
187. Криптон (Kr) - 85m
188. Криптон (Kr) - 87
189. Криптон (Kr) - 88
190. Криптон (Kr) - 89
191. Ксенон (Xe) - 127
192. Ксенон (Xe) - 133
193. Ксенон (Xe) - 133m
194. Ксенон (Xe) - 135
195. Ксенон (Xe) - 135m
196. Ксенон (Xe) - 137
197. Ксенон (Xe) - 138
198. Кюрий (Cm) - 242
199. Кюрий (Cm) - 243
200. Кюрий (Cm) - 244
201. Лантан (La) - 140
202. Марганец (Mn) - 54
203. Молибден (Mo) - 99
204. Натрий (Na) - 22
205. Натрий (Na) - 24
206. Нептуний (Np) - 237
207. Никель (Ni) - 63
208. Ниобий (Nb) - 95
209. Плутоний (Pu) - 238
210. Плутоний (Pu) - 239
211. Плутоний (Pu) - 240
212. Плутоний (Pu) - 241
213. Полоний (Po) - 210
214. Празеодим (Pr) - 144
215. Прометий (Pm) - 147
216. Радий (Ra) - 226
217. Радон (Rn) - 222
218. Ртуть (Hg) - 197
219. Рутений (Ru) - 103
220. Рутений (Ru) - 106
221. Свинец (Pb) - 210
222. Селен (Se) - 75
223. Сера (S) - 35
224. Серебро (Ag) - 110m
225. Стронций (Sr) - 89
226. Стронций (Sr) - 90
227. Сурьма (Sb) - 122
228. Сурьма (Sb) - 124
229. Сурьма (Sb) - 125
230. Таллий (Tl) - 201
231. Теллур (Te) - 123m
232. Технеций (Tc) - 99
233. Технеций (Tc) - 99m
234. Торий (Th) - 230
235. Торий (Th) - 231
236. Торий (Th) - 232
237. Торий (Th) - 234
238. Углерод (C) - 14
239. Уран (U) - 232
240. Уран (U) - 233
241. Уран (U) - 234
242. Уран (U) - 235
243. Уран (U) - 236
244. Уран (U) - 238
245. Фосфор (P) - 32
246. Хлор (Cl) - 36
247. Хром (Cr) - 51
248. Цезий (Cs) - 134
249. Цезий (Cs) - 137
250. Церий (Ce) - 141
251. Церий (Ce) - 144
252. Цинк (Zn) - 65
253. Цирконий (Zr) - 95
254. Эрбий (Er) - 169

II. Для водных объектов

1. Акрилонитрил (нитрил акриловой кислоты)
2. Алюминий
3. Алкилбензилпиридиний хлорид
4. Алкилсульфонаты
5. Аммоний-ион
6. Аммиак
7. Анилин (аминобензол, фениламин)
8. АОХ (абсорбируемые галогенорганические соединения)
9. Ацетат натрия
10. Ацетальдегид
11. Ацетон (диметилкетон, пропанон)
12. Ацетонитрил
13. Барий
14. Берилий
15. Бензапирен
16. Бензол и его гомологи
17. Бор
18. Борная кислота
19. Бромдихлорметан
20. Бромид анион
21. Бутанол
22. Бутилацетат
23. Бутилметакрилат
24. Ванадий
25. Винил ацетат
26. Винил хлорид
27. Висмут
28. Вольфрам
29. Гексан
30. Гидразингидрат
31. Глицерин (пропан-1,2,3-триол)
32. Дибромхлорметан
33. 1,2-Дихлорэтан
34. 1,4-Дигидроксибензол (гидрохинон)
35. 2,6-Диметиланилин
36. Диметиламин (N-метилметанамин)
37. Диметилмеркаптан (диметилсульфид)
38. 2,4-Динитрофенол
39. Диметилформамид
40. о-Диметилфталат (диметилбензол-1,2-дикарбонат)
41. 1,2-Дихлорпропан
42. Цис-1,3-дихлорпропен
43. Транс-1,3-дихлорпропен
44. 2,4-Дихлорфенол (гидроксидихлорбензол)
45. Додецилбензол
46. Дихлорметан (хлористый метилен)
47. Железо
48. Кадмий
49. Калий
50. Кальций
51. Капролактам (гексагидро-2Н-азепин-2-он)
52. Карбамид (мочевина)
53. Кобальт
54. Кремний (силикаты)
55. о-Крезол (2-метилфенол)
56. п-Крезол (4-метилфенол)
57. Ксилол (о-ксилол, м-ксилол, п-ксилол)
58. Лигнинсульфоновые кислоты
59. Лигносульфонаты
60. Литий
61. Магний
62. Марганец
63. Медь
64. Метанол (метиловый спирт)
65. Метилакрилат (метилпроп-2-еноат, метиловый эфир акриловой кислоты)
66. Метантиол (метилмеркаптан)
67. Метилацетат
68. Метол (1-гидрокси-4-(метиламино)бензол)
69. Молибден
70. Моноэтаноламин
71. Мышьяк и его соединения
72. Натрий
73. Нафталин
74. Нефтепродукты (нефть)
75. Никель
76. Нитрат-анион
77. Нитрит-анион
78. Нитробензол
79. Олово и его соединения
80. 1,1,2,2,3-пентахлорпропан
81. Пентахлорфенол
82. Пиридин
83. Полиакриламид
84. Пропанол
85. Роданид-ион
86. Рубидий
87. Ртуть и ее соединения
88. Свинец
89. Селен
90. Серебро
91. Сероуглерод
92. АСПАВ (анионные синтетические поверхностно-активные вещества)
93. КСПАВ (катионные синтетические поверхностно-активные вещества)
94. НСПАВ (неионогенные синтетические поверхностно-активные вещества)
95. Скипидар
96. Стирол (этенилбензол, винилбензол)
97. Стронций
98. Сульфат-анион (сульфаты)
99. Сульфиды
100. Сульфит-анион
101. Сурьма
102. Таллий
103. Теллур
104. 1,1,1,2-тетрахлорэтан
105. Тетрахлорэтилен (перхлорэтилен)
106. Тетрахлорметан (четыреххлористый углерод)
107. Тетраэтилсвинец
108. Тиокарбамид (тиомочевина)
109. Тиосульфаты
110. Титан
111. Толуол
112. Трилон-Б (этилендиаминтетрауксусной кислоты динатриевая соль)
113. Триэтиламин
114. Трихлорбензол (сумма изомеров)
115. 1,2,3-трихлорпропан
116. 2,4,6-Трихлорфенол
117. Трихлорэтилен
118. Уксусная кислота
119. Фенол, гидроксибензол
120. Формальдегид (метаналь, муравьиный альдегид)
121. Фосфаты (по фосфору)
122. Фторид-анион
123. Фурфурол
124. Хлор свободный, растворенный и хлорорганические соединения
125. Хлорат-анион
126. Хлорбензол
127. Хлороформ (трихлорметан)
128. Хлорфенолы
129. Хлорид-анион (хлориды)
130. Хром трехвалентный
131. Хром шестивалентный
132. Цезий
133. Цианид-анион
134. Циклогексанол
135. Цинк
136. Цирконий
137. Этанол
138. Этилацетат
139. Этилбензол
140. Этиленгликоль (гликоль, этандиол-1,2)

Стойкие органические загрязнители

141. Альдрин (1,2,3,4,10,10-гексахлор-1,4,4а, 5,8,8а-гексагидро-1,4-эндоэкзо-5,8-диметанонафталин)
142. Атразин (6-хлоро-N-этил-N"-(1-метилэтил)-1,3,5-триазины-2,4-диамин)
143. Гексахлорбензол
144. Гексахлорциклогексан (альфа-, бета-, гаммаизомеры)
145. 2,4-Д (2,4-дихлорфеноксиуксусная кислота и производные)
146. Дильдрин (1,2,3,4,10,10-гексахлор-экзо-6,7-эпокси-1,4,4а,5,6,7,8,8а-октагидро-1,4-эндо, экзо-5,8-диметанонафталин)
147. Диоксины
148. Каптан (3а, 4, 7, 7а-тетрагидро-2-[(трихлорметил) тио] -1н-изоиндол-1, 3 (2н)-дион)
149. Карбофос (диэтил (диметоксифосфинотионил)тиобутандионат)
150. 4,4"-ДДТ (п,п"- ДДТ, 4,4"-дихлордифенилтрихлорметилэтан)
151. 4,4"-ДДД (п,п"-ДДД, 4,4"-дихлордифенилдихлорэтан)
152. Прометрин (2,4-Бис(изопропиламино)-6-метилтио-симм-триазин)
153. Симазин (6-хлор-N, N"-диэтил-1,3,5-триазины-2,4-диамин)
154. Полихлорированные бифенилы (ПХБ 28, ПХБ 52, ПХБ 74, ПХБ 99, ПХБ 101, ПХБ 105, ПХБ 110, ПХБ 153, ПХБ 170)
155. Трифлуралин (2,6-динитро-N, N-дипропил-4-(трифторметил)анилин)
156. ТХАН (трихлорацетат натрия, ТЦА)
157. Фозалон (О,О-диэтил-(S-2,3-дигидро-6-хлор-2-оксобензоксазол-3-илметил)-дитиофосфат)

Микроорганизмы

158. Возбудители инфекционных заболеваний
159. Жизнеспособные цисты патогенных кишечных простейших
160. Жизнеспособные яйца гельминтов
161. Коли-фаги
162. Общие колиформные бактерии
163. Термотолерантные колиформные бактерии

Иные загрязняющие вещества

164. БПК 5
165. БПК полн.
166. Взвешенные вещества
167. Сухой остаток
168. ХПК

169. Америций (Am) - 241
170. Барий (Ba) - 140
171. Водород (H) - 3
172. Галлий (Ga) - 67
173. Европий (Eu) - 152
174. Европий (Eu) - 154
175. Европий (Eu) - 155
176. Железо (Fe) - 55
177. Железо (Fe) - 59
178. Золото (Au) - 198
179. Индий (In) - 111
180. Иридий (Ir) - 192
181. Йод (I) - 123
182. Йод (I) - 129
183. Йод (I) - 131
184. Йод (I) - 132
185. Йод (I) - 133
186. Йод (I) - 135
187. Калий (K) - 42
188. Кальций (Ca) - 45
189. Кальций (Ca) - 47
190. Кобальт (Co) - 57
191. Кобальт (Co) - 58
192. Кобальт (Co) - 60
193. Кюрий (Cm) - 242
194. Кюрий (Cm) - 243
195. Кюрий (Cm) - 244
196. Лантан (La) - 140
197. Марганец (Mn) - 54
198. Молибден (Mo) - 99
199. Натрий (Na) - 22
200. Натрий (Na) - 24
201. Нептуний (Np) - 237
202. Никель (Ni) - 63
203. Ниобий (Nb) - 95
204. Плутоний (Pu) - 238
205. Плутоний (Pu) - 239
206. Плутоний (Pu) - 240
207. Плутоний (Pu) - 241
208. Полоний (Po) - 210
209. Празеодим (Pr) - 144
210. Прометий (Pm) - 147
211. Радий (Ra) - 226
212. Радон (Rn) - 222
213. Ртуть (Hg) - 197
214. Рутений (Ru) - 103
215. Рутений (Ru) - 106
216. Свинец (Pb) - 210
217. Селен (Se) - 75
218. Сера (S) - 35
219. Серебро (Ag) - 110m
220. Стронций (Sr) - 89
221. Стронций (Sr) - 90
222. Сурьма (Sb) - 122
223. Сурьма (Sb) - 124
224. Сурьма (Sb) - 125
225. Таллий (Tl) - 201
226. Теллур (Te) - 123m
227. Технеций (Tc) - 99
228. Технеций (Tc) - 99 m
229. Торий (Th) - 230
230. Торий (Th) - 231
231. Торий (Th) - 232
232. Торий (Th) - 234
233. Углерод (C) - 14
234. Уран (U) - 232
235. Уран (U) - 233
236. Уран (U) - 234
237. Уран (U) - 235
238. Уран (U) - 236
239. Уран (U) - 238
240. Фосфор (P) - 32
241. Хлор (Cl) - 36
242. Хром (Cr) - 51
243. Цезий (Cs) - 134
244. Цезий (Cs) - 137
245. Церий (Ce) - 141
246. Церий (Ce) - 144
247. Цинк (Zn) - 65
248. Цирконий (Zr) - 95
249. Эрбий (Er) - 169

III. Для почв

1. Бензапирен
2. Бензин
3. Бензол
4. Ванадий
5. Гексахлорбензол (ГХБ)
6. Глифосат
7. Дикамба
8. Диметитбензолы (1,2-диметилбензол, 1,3-диметилбензол, 1,4-диметилбензол)
9. 1,1-ди-(4-хлорфенил) - 2,2,2-трихлорэтан (ДДТ) и метаболиты ДДЭ, ДДД
10. 2,2"-Дихлордиэтилсульфид (иприт)
11. 2,4-Д и производные (2,4-дихлорфеноксиуксусная кислота и ее производные)
12. Кадмий
13. Кобальт
14. Малатион (карбофос)
15. Марганец
16. Медь
17. Метаналь
18. Метилбензол
19. (1-метилэтенил) бензол
20. (1-метилэтил) бензол
21. МСРА
22. Мышьяк
23. Нефтепродукты
24. Никель
25. Нитраты (по NO3)
26. Нитриты (по NO2)
27. О-(1,2,2-триметилпропил) метилфторфосфонат (зоман)
28. О-изопропилметилфторфосфонат (зарин)
29. О-Изобутил-бета-п- диэтиламиноэтантиоловый эфир метилфосфоновой кислоты
30. Перхлорат аммония
31. Паратион-метил (метафос)
32. Прометрин
33. ПХБ N 28 (2,4,4"-трихлоробифенил)
34. ПХБ N 52 (2,2",5,5"-тетрахлоробифенил)
35. ПХБ N 101 (2,2",4,5,5"-пентахлоробифенил)
36. ПХБ N 118 (2,3,4,4,5-пентахлорбифенил)
37. ПХБ N 138 (2,2I,3,4,4I,5-гексахлоробифенил)
38. ПХБ N 153 (2,2,4,4",5>5"-гексахлоробифенил)
39. ПХБ N 180 (2,2",3,4,4",5,5"-гептахлоробифенил)
40. ПХК (токсафен)
41. Ртуть неорганическая и ртуть органическая
42. Свинец
43. Серная кислота (по S)
44. Сероводород (по S)
45. Сумма полиароматических углеводородов
46. Сурьма
47. Фенолы
48. Фосфаты (по Р2О5)
49. Фтор
50. Фуран-2-карбальдегид
51. 2-Хлорвинилдихлорарсин (люизит)
52. Хлорид калия (по К2О)
53. Хлорбензолы
54. Хлорфенолы
55. Хром трехвалентный
56. Хром шестивалентный
57. Цинк
58. Этаналь
59. Этилбензол

Радиоактивные изотопы в элементной форме и в виде соединений

60. Плутоний (Pu) - 239
61. Плутоний (Pu) - 240
62. Стронций (Sr) - 90
63. Цезий (Сs) - 137

4.4.1 Воздействие объекта на атмосферный воздух и характеристика источников выброса загрязняющих веществ в период эксплуатации

Основными источниками выделения загрязняющих веществ являются:

    Резервуарный парк

а) Жидкое моторное топливо

Слив в резервуары осуществляется самотеком при включенном двигателе автоцистерны. Выделение загрезняющих веществ происходит при хранении и сливе топлива. Выделяются следующие загрязняющие вещества: пентилены (амилены – смесь изомеров), бензол, ксилол, смесь предельных углеводородов С1-С5 и С6-С10, толуол, этилбензол, сероводород, углеводороды предельные С12-С19. При заполнении резервуаров отпуск топлива на ТРК не производится. Одновременно заполняется только один резервуар. Источник выбросов организованный – с помощью дыхательного клапана резервуара;

Выделение загрязняющих веществ происходит при хранении и закачке топлива. Выделяются следующие загрязняющие вещества: смесь предельных углеводородов С1-С5, метилмеркаптан. При заполнении резервуаров отпуск топлива на ТРК не производится. Одновременно заполняется только один резервуар. Источник выбросов организованный – сбросная свеча резервуара.

    Топливо - раздаточные колонки

а) Жидкое моторное топливо

Выделение загрязняющих веществ при наливе топлива в баки автомобилей. Выделяются следующие загрязняющие вещества: пентилены(амилены – смесь изомеров), бензол, ксилол, смесь углеводородов предельных С1-С5, С6-С10 и С12-С19, толуол, этилбензол, сероводород. Источник выбросов неорганизованный – бак автомобиля;

б) Газообразное моторное топливо (СУГ)

Выделение загрязняющих веществ происходит при закачке топлива в баллоны автомобилей (отсоединение струбцины, выброс из шланга). Выделяются следующие загрязняющие вещества: смесь углеводородов предельных С1-С5, метилмеркаптаны (одорант). Источник выбросов неорганизованный – балон автомобиля.

    Площадка автоцистерны ЖМТ

Доставка нефтепродуктов АЗС осуществляется бензовозами, один раз в два дня. Выделение загрязняющих веществ происходит в результате сгорания дизельного топлива при работе двигателя автоцистеры. Выделяются следующие загрязняющие вещества: оксид азота (III), диоксид азота, диоксид серы (ангедрид сернистый), керосин, углерод черный (сажа), оксид углерода. Выброс загрязняющих веществ площадной.

    Площадка автоцистерн газообразного топлива

Доставка СУГ на АЗС осуществляется автоцистерной, один раз в два дня. Выделение загрязняющих веществ происходит в результате сгорания дизельного топлива при работе двигателя автоцистеры (закачка азота происходит через герметичную систему). Выделяются следующие загрязняющие вещества: оксид азота (III), диоксид азота, диоксид серы (ангедрид сернистый), керосин, углерод черный (сажа), оксид углерода. Выброс загрязняющих веществ площадной.

    Стоянка легкового и грузового автотранспорта

Выделение загрязняющих веществ происходит при работе двигателя автомобилей. В атмосферу выбрасываются: бензин, диоксид азота, керосин, оксид углерода, деоксид серы, сажа.

    Резервуар сбора ливневых вод

В атмосферу выбрасывается смесь углеводородов предельных С1-С5, содержащихся в сточных водах. Источник выброса организованный – дыхательный клапан резервуара.

Значения предельно-допустимой концентрации (ПДК) в атмосферном воздухе населенных пунктов и класс опасности вредных веществ в период эксплуатации представлены в таблице 7.

Таблица 7– Концентрации и класс опасности вредных веществ

Вещество

Используемый критерий

Значение критерия, мг/ м 3

Класс опасности

Суммарный выброс вещества

Диоксид азота

Оксид азота

Диоксид серы

Сероводород

Оксид углерода

Пентилены (амилены, смесь изомеров)

Продолжение таблицы 7

Метилбензол

Этилбензол

Ментатиол

Бензин (нефтяной малосернистый)

Алканы С12-С19, углеводороды предельные С12-С19

Смесь углеводородов предельных С1-С5

Смесь углеводородов предельных С6-С10

Всего веществ

в том числе твердых

жидких/газообразных

По данным приведенным в таблице 6 можно сделать следующие выводы. Фоновые показатели загрязнения атмосферного воздуха не препятствуют эксплуатации АЗС. В период эксплуатации в атмосферу ожидается выброс 2,5128671 т/год загрязняющих веществ 18 наименований от 2 до 4 класса опасности.