Работа и мощность кпд техническая механика. Техническая механика

Называется мощность, которую он может от-давать длительное время, не перегреваясь свыше допу-стимой температуры. Нормальный срок службы силового трансформатора должен быть не менее 20 лет. Так как нагрев обмоток зависит от величины протекающего по ним тока, в паспорте трансформатора всегда указывают пол-ную мощность S ном в вольт-амперах или киловольт-ампе-рах.

В зависимости от коэффициента мощности cosφ 2 , при котором работают потребители, от трансформатора можно получать большую или меньшую полезную мощность. При cosφ 2 = l мощность подключенных к нему потребителей может быть равна его номинальной мощности S ном . При cosφ 2 .

Коэффициент мощности .

Коэффициент мощности cosφ трансформатора определяется характером нагрузки, под-ключенной к его вторичной цепи. При уменьшении нагрузки начинает сильно сказываться индуктивное сопротивление обмоток трансформатора и коэффициент мощности его снижается. При отсутствии нагрузки (при холостом ходе) трансформатор имеет очень низкий коэффициент мощно-сти, что ухудшает показатели работы источников пере-менного тока и электрических сетей. В этом случае транс-форматор необходимо отключать от сети переменного тока.

Потери мощности и КПД.

При передаче мощности из первичной обмотки трансформатора во вторичную возникают потери мощности как в самих про-водах первичной и вторичной обмоток (электрические потери и или потери в меди), так и в стали магнитопровода (потери в стали ).

При холостом ходе трансформатор не передает элек-трическую энергию потребителю. Потребляемая им мощ-ность тратится в основном на компенсацию потерь мощ-ности в магнитопроводе от действия вихревых токов и гистерезиса. Эти потери называют потерями в стали или потерями холостого хода. Чем меньше поперечное сечение магнитопровода, тем больше в нем индукция, а следовательно, и потери холостого хода. Они значительно возрастают также при увеличении напряжения, подводимого к первичной обмотке, свыше номинального значения. При работе мощных трансформаторов потери холостого хода составляют 0,3-0,5% его номинальной мощности. Тем не менее их стремятся максимально уменьшить. Объясняется это тем, что потери в стали не зависят от того, работает ли трансформатор вхолостую или под на-грузкой. А так как общее время работы трансформатора обычно довольно велико, то суммарные годовые потери энергии при холостом ходе составляют значительную вели-чину.

При нагрузке к потерям холостого хода добавляются электрические потери в проводах обмоток (потери в меди), пропорциональные квадрату на-грузочного тока. Эти потери при номинальном токе при-мерно равны мощности, потребляемой трансформатором при коротком замыкании, когда на его первичную обмотку подано напряжение U к. Для мощных трансформаторов ониобычно составляют 0,5-2 % номинальной мощности. Уменьшение суммарных потерь достигается соответст-вующим выбором сечения проводов обмоток трансформа-тора (снижение электрических потерь в проводах), при-менением электротехнической стали для изготовления магнитопровода (снижение потерь от перемагничивания) и расслоением магнитопровода на ряд изолированных друг от друга листов (снижение потерь от вихревых токов).


К. п. д трансформатора равен

КПД трансформатора сравнительно высок и дости-гает в трансформаторах большой мощности - 98-99%. В трансформаторах малой мощности КПД может сни-жаться до 50-70%. При изменении нагрузки КПД трансформатора изменяется, так как меняются полезная мощность и электрические потери. Однако он сохраняет большое значение в довольно широком диапазоне измене-ния нагрузки (рис. 119,6). При значительных недогруз-ках КПД понижается, так как полезная мощность умень-шается, а потери в стали остаются неизменными. Пони-жение КПД вызывается также перегрузками, так как резко возрастают электрические потери (они пропорцио-нальны квадрату тока нагрузки, в то время как полезная мощность - только току в первой степени). Максимальное значение КПД имеет при такой нагрузке, когда элек-трические потери равны потерям в стали.

При проектировании трансформаторов стремятся, чтобы максимальное значение КПД достигалось при нагрузке 50-75% номинальной; этому соответствует наиболее вероят-ная средняя нагрузка рабо-тающего трансформатора. Та-кая нагрузка называется эко-номической.



Работа постоянной силы на прямолинейном участке

Рассмотрим материальную точку М , к которой приложена сила F . Пусть точка переместилась из положения М 0 в положение М 1 , пройдя путь s (рис. 1) .

Чтобы установить количественную меру воздействия силы F на пути s , разложим эту силу на составляющие N и R , направленные соответственно перпендикулярно направлению перемещения и вдоль него. Так как составляющая N (перпендикулярная перемещению) не может двигать точку или сопротивляться ее перемещению в направлении s , то действие силы F на пути s можно определить произведением Rs .
Эта величина называется работой и обозначается W .
Следовательно,

W = Rs = Fs cos α ,

т. е. работа силы равна произведению ее модуля на путь и на косинус угла между направлением вектора силы и направлением перемещения материальной точки.

Таким образом, работа является мерой действия силы, приложенной к материальной точке при некотором ее перемещении .
Работа является скалярной величиной.

Рассматривая работу силы, можно выделить три частных случая: сила направлена вдоль перемещения (α = 0˚) , сила направлена в противоположном перемещению направлении (α = 180˚) , и сила перпендикулярна перемещению (α = 90˚) .
Исходя из величины косинуса угла α , можно сделать вывод, что в первом случае работа будет положительной, во втором – отрицательной, а в третьем случае (cos 90˚ = 0) работа силы равна нулю.
Так, например, при движении тела вниз работа силы тяжести будет положительной (вектор силы совпадает с перемещением), при подъеме тела вверх работа силы тяжести будет отрицательной, а при горизонтальном перемещении тела относительно поверхности Земли работа силы тяжести будет равна нулю.

Силы, совершающие положительную работу, называются движущимися силами , силы, а совершающие отрицательную работу – силами сопротивления .

Единицей работы принят джоуль (Дж) :
1 Дж = сила×длина = ньютон×метр = 1 Нм .

Джоуль – это работа силы в один ньютон на пути в один метр.

Работа силы на криволинейном участке пути

На бесконечно малом участке ds криволинейный путь можно условно считать прямолинейным, а силу – постоянной.
Тогда элементарная работа dW силы на пути ds равна

dW = F ds cos (F ,v) .

Работа на конечном перемещении равна сумме элементарных работ:

W = ∫ F cos (F ,v) ds .


На рисунке 2а изображен график зависимости между пройденным расстоянием и F cos (F ,v) . Площадь заштрихованной полоски, которую при бесконечно малом перемещении ds можно принять за прямоугольник, равна элементарной работе на пути ds :

dW = F cos (F ,v) ds ,

F на конечном пути s графически выражается площадью фигуры ОАВС , ограниченной осью абсцисс, двумя ординатами и кривой АВ , которая называется кривой сил .

Если работа совпадает с направлением перемещения и возрастает от нуля пропорционально пути, то работа графически выражается площадью треугольника ОАВ (рис. 2 б) , которая, как известно, может быть определена половиной произведения основания на высоту, т. е. половиной произведения силы на путь:

W = Fs/2 .

Теорема о работе равнодействующей

Теорема: работа равнодействующей системы сил на каком-то участке пути равна алгебраической сумме работ составляющих сил на том же участке пути .

Пусть к материальной точке М приложена система сил (F 1 , F 2 , F 3 ,...F n) , равнодействующая которых равна F Σ (рис. 3) .

Система сил, приложенных к материальной точке, есть система сходящихся сил, следовательно,

F Σ = F 1 + F 2 + F 3 + .... + F n .

Спроецируем это векторное равенство на касательную к траектории, по которой движется материальная точка, тогда:

F Σ cos γ = F 1 cos α 1 + F 2 cos α 2 + F 3 cos α 3 + .... + F n cos α n .

Умножим обе части равенства на бесконечно малое перемещение ds и проинтегрируем полученное равенство в пределах какого-то конечного перемещения s :

∫ F Σ cos γ ds = ∫ F 1 cos α 1 ds + ∫ F 2 cos α 2 ds + ∫ F 3 cos α 3 ds + .... + ∫ F n cos α n ds ,

что соответствует равенству:

W Σ = W 1 + W 2 + W 3 + ... + W n

или сокращенно:

W Σ = ΣW Fi

Теорема доказана.

Теорема о работе силы тяжести

Теорема: работа силы тяжести не зависит от вида траектории и равна произведению модуля силы на вертикальное перемещение точки ее приложения .

Пусть материальная точка М движется под действием силы тяжести G и за какой-то промежуток времени перемещается из положения М 1 в положение М 2 , пройдя путь s (рис. 4) .
На траектории точки М выделим бесконечно малый участок ds , который можно считать прямолинейным, и из его концов проведем прямые, параллельные осям координат, одна из которых вертикальна, а другая горизонтальна.
Из заштрихованного треугольника получим, что

dy = ds cos α .

Элементарная работа силы G на пути ds равна:

dW = F ds cos α .

Полная работа силы тяжести G на пути s равна

W = ∫ Gds cos α = ∫ Gdy = G ∫ dy = Gh .

Итак, работа силы тяжести равна произведению силы на вертикальное перемещение точки ее приложения:

W = Gh ;

Теорема доказана.

Пример решения задачи по определению работы силы тяжести

Задача: Однородный прямоугольный массив АВСD массой m = 4080 кг имеет размеры, указанные на рис. 5 .
Определить работу, которую необходимо выполнить для опрокидывания массива вокруг ребра D .

Решение.
Очевидно, что искомая работа будет равна работе сопротивления, совершаемой силой тяжести массива, при этом вертикальное перемещение центра тяжести массива при опрокидывании через ребро D является путем, который определяет величину работы силы тяжести.

Для начала определим силу тяжести массива: G = mg = 4080×9,81 = 40 000 Н = 40 кН .

Для определения вертикального перемещения h центра тяжести прямоугольного однородного массива (он находится в точке пересечения диагоналей прямоугольника), используем теорему Пифагора, исходя из которой:

КО 1 = ОD – КD = √(ОК 2 + КD 2) – КD = √(3 2 +4 2) - 4 = 1 м .

На основании теоремы о работе силы тяжести определим искомую работу, необходимую для опрокидывания массива:

W = G×КО 1 = 40 000×1 = 40 000 Дж = 40 кДж.

Задача решена.



Работа постоянной силы, приложенной к вращающемуся телу

Представим себе диск, вращающийся вокруг неподвижной оси под действием постоянной силы F (рис. 6) , точка приложения которой перемещается вместе с диском. Разложим силу F на три взаимно-перпендикулярные составляющие: F 1 – окружная сила, F 2 – осевая сила, F 3 – радиальная сила.

При повороте диска на бесконечно малый угол dφ сила F совершит элементарную работу, которая на основании теоремы о работе равнодействующей будет равна сумме работ составляющих.

Очевидно, что работа составляющих F 2 и F 3 будет равна нулю, так как векторы этих сил перпендикулярны бесконечно малому перемещению ds точки приложения М , поэтому элементарная работа силы F равна работе ее составляющей F 1 :

dW = F 1 ds = F 1 Rdφ .

При повороте диска на конечный угол φ F равна

W = ∫ F 1 Rdφ = F 1 R ∫ dφ = F 1 Rφ ,

где угол φ выражается в радианах.

Так как моменты составляющих F 2 и F 3 относительно оси z равны нулю, то на основании теоремы Вариньона момент силы F относительно оси z равен:

М z (F) = F 1 R .

Момент силы, приложенной к диску, относительно оси вращения называется вращающим моментом, и, согласно стандарту ИСО , обозначается буквой Т :

Т = М z (F) , следовательно, W = Tφ .

Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угловое перемещение .

Пример решения задачи

Задача: рабочий вращает рукоятку лебедки силой F = 200 Н , перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени t = 25 секунд , если длина рукоятки r = 0,4 м , а ее угловая скорость ω = π/3 рад/с .

Решение.
Прежде всего определим угловое перемещение φ рукоятки лебедки за 25 секунд :

φ = ωt = (π/3)×25 = 26,18 рад.

W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж .

Мощность

Работа, совершаемая какой-либо силой, может быть за различные промежутки времени, т. е. с разной скоростью. Чтобы охарактеризовать, насколько быстро совершается работа, в механике существует понятие мощности , которую обычно обозначают буквой P .

Мощностью называется работа, совершаемая в единицу времени.

Если работа совершается равномерно, то мощность определяют по формуле

P = W/t .

Если направление силы и направление перемещения совпадают, что эту формулу можно записать в иной форме:

P = W/t = Fs/t или P = Fv .

Мощность силы равна произведению модуля силы на скорость точки ее приложения .

Если работа совершается силой, приложенной к равномерно вращающемуся телу, то мощность в этом случае может быть определена по формуле:

P = W/t = Tφ/t или P = Tω .

Мощность силы, приложенной к равномерно вращающемуся телу, равна произведению вращающего момента на угловую скорость .

Единицей измерения мощности является ватт (Вт):

Ватт = работа/время = джоуль в секунду.

Понятие об энергии и КПД

Способность тела при переходе из одного состояния в другое совершать работу называется энергией . Энергия есть общая мера различных форм движения материи.

В механике для передачи и преобразования энергии применяются различные механизмы и машины, назначение которых – выполнение заданных человеком полезных функций. При этом энергия, передаваемая механизмами, называется механической энергией , которая принципиально отличается от тепловой, электрической, электромагнитной, ядерной и других известных видов энергии. Виды механической энергии тела мы рассмотрим на следующей странице , а здесь лишь определимся с основными понятиями и определениями.

При передаче или преобразовании энергии, а также при совершении работы, имеют место потери энергии, поскольку механизмы и машины, служащие для передачи или преобразования энергии преодолевают различные силы сопротивления (трения, сопротивления окружающей среды и т. п.). По этой причине часть энергии при передаче безвозвратно теряется и не может быть использована для выполнения полезной работы.

Коэффициент полезного действия

Часть энергии, потерянная при ее передаче на преодоление сил сопротивления, учитывается при помощи коэффициента полезного действия механизма (машины), передающего эту энергию.
Коэффициент полезного действия (КПД) обозначается буквой η и определяется, как отношение полезной работы (или мощности) к затраченной:

η = W 2 /W 1 = P 2 /P 1 .

Если коэффициент полезного действия учитывает только механические потери, то его называют механическим КПД .

Очевидно, что КПД – всегда правильная дробь (иногда его выражают в процентах) и его значение не может быть больше единицы. Чем ближе значение КПД к единице (100 %) , тем экономичнее работает машина.

Если энергия или мощность передаются рядом последовательных механизмов, то суммарный КПД может быть определен, как произведение КПД всех механизмов:

η = η 1 η 2 η 3 ....η n ,

где: η 1 , η 2 , η 3 , .... η n – КПД каждого механизма в отдельности.



Иметь представление о мощности при прямолинейном и кри­волинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.

Знать зависимости для определения мощности при поступа­тельном и вращательном движениях, КПД.

Мощность

Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.

Мощность - работа, выполненная в единицу времени:

Единицы измерения мощности: ватты, киловатты,

Мощность при поступательном движении (рис. 16.1)

Учитывая, что S/t = v cp , полу­чим

где F - модуль силы, действующей на тело; v ср - средняя скорость движения тела.

Средняя мощность при поступательном движении равна про­изведению модуля силы на среднюю скорость перемещения и на ко­синус угла между направлениями силы и скорости.

Мощность при вращении (рис. 16.2)

Тело движется по дуге радиуса r из точки М 1 в точку M 2

Работа силы:

где М вр - вращающий момент.

Учитывая, что

Получим

где ω cp - средняя угловая скорость.

Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.

Если при выполнении работы усилие машины и скорость дви­жения меняются, можно определить мощность в любой момент вре­мени, зная значения усилия и скорости в данный момент.

Коэффициент полезного действия

Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы со­вершает еще и дополнительную работу.

Отношение полезной работы к полной работе или полезной мощ­ности ко всей затраченной мощности называется коэффициентом по­лезного действия (КПД):

Полезная работа (мощность) расходуется на движение с задан­ной скоростью и определяется по формулам:

Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечки и тому подобные потери.

Чем выше КПД, тем совершеннее машина.

Примеры решения задач

Пример 1. Определить потребную мощность мотора лебедки для подъема груза весом 3 кН на высоту 10 м за 2,5 с (рис. 16.3). КПД механизма лебедки 0,75.

Решение

1. Мощность мотора используется на подъем груза с заданной скоростью и преодоление вредных сопротивлений механизма лебедки.

Полезная мощность определяется по формуле

Р = Fv cos α.

В данном случае α = 0; груз движется поступательно.

2. Скорость подъема груза

3. Необходимое усилие равно весу груза (равномерный подъем).

6. Полезная мощность Р = 3000 4 = 12 000 Вт.

7. Полная мощность. затрачиваемая мотором,

Пример 2. Судно движется со скоростью 56 км/ч (рис. 16.4). Двигатель развивает мощность 1200 кВт. Определить силу сопротивления во­ды движению судна. КПД машины 0,4.

Решение

1. Определяем полезную мощность, используемую на движение с заданной скоростью:

2. По формуле для полезной мощности можно определить движущую силу судна с учетом условия α = 0. При равномерном дви­жении движущая сила равна силе сопротивления воды:

Fдв = Fcопр.

3. Скорость движения судна v = 36 * 1000/3600 = 10 м/с

4. Сила сопротивления воды

Сила сопротивления воды движению судна

Fcопр. = 48 кН

Пример 3. Точильный камень прижимается к обрабатываемой детали с силой 1,5 кН (рис. 16.5). Какая мощ­ность затрачивается на обработку детали, если коэффициент трения материала камня о деталь 0,28; деталь вращается со скоростью 100 об/мин, диаметр детали 60 мм.

Решение

1. Резание осуществляется за счет трения между точильным камнем и обрабатываемой деталью:

Пример 4. Для того чтобы поднять волоком по наклонной плоскости на высоту H = 10 м станину массой т == 500 кг, воспользовались электрической лебедкой (рис. 1.64). Вращающий момент на выходном барабане лебедки М = 250 Н-м. Ба­рабан равномерно вращается с частотой п = 30 об/мин. Для подъема станины лебедка ра­ботала в течение t = 2 мин. Определить коэффициент по­лезного действия наклонной плоскости.

Решение

Как известно,

где А п.с. - полезная работа; А дв - работа движущих сил.

В рассматриваемом примере полезная работа - работа силы тяжести

Вычислим работу движущих сил, т. е. работу вра­щающего момента на выходном валу лебедки:

Угол поворота барабана лебедки определяется по уравнению равномерного вращения:

Подставив в выражение работы движущих сил число­вые значения вращающего момента М и угла поворота φ , получим:

Коэффициент полезного действия наклонной плоскости составит

Контрольные вопросы и задания

1. Запишите формулы для расчета работы при поступательном и вращательном движениях.

2. Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести.

3. Колодочным тормозом останавливают барабан после отклю­чения двигателя (рис. 16.6). Определите работу торможения за 3 обо­рота, если сила прижатия колодок к барабану 1 кН, коэффициент трения 0,3.

4. Натяжение ветвей ременной передачи S 1 = 700 Н, S 2 = 300 Н (рис. 16.7). Определите вращающий момент передачи.

5. Запишите формулы для расчета мощности при поступатель­ном и вращательном движениях.

6. Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин.

7. Определите общий КПД механизма, если при мощности дви­гателя 12,5 кВт и общей силе сопротивления движению 2 кН ско­рость движения 5 м/с.

8. Ответьте на вопросы тестового задания.


Тема 1.14. Динамика. Работа и мощность



Пример. Средняя сила тяги двигателя составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F∙S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q∙m, где q – удельная теплота сгорания топлива, для бензина она равна 42∙10^6 Дж/кг, а m – масса этого топлива. КПД двигателя будет равен КПД=(F∙S)/(q∙m)∙100%= (882∙100000)/(42∙10^6∙7)∙100%=30%.

В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, турбины и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД измеряется в дольных единицах от 0 до 1, чтобы перевести результат в проценты, умножьте его на 100.

Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.

Для электродвигателя найдите затраченную работу как произведение мощности на время ее выполнения. Например, если электродвигатель крана мощностью 3,2 кВт поднимает груз массой 800 кг на высоту 3,6 м за 10 с, то его КПД равен отношению полезной работы Ап=m∙g∙h, где m – масса груза, g≈10 м/с² ускорение свободного падения, h – высота на которую подняли груз, и затраченной работы Аз=Р∙t, где Р – мощность двигателя, t – время его работы. Получите формулу для определения КПД=Ап/Аз∙100%=(m∙g∙h)/(Р∙t) ∙100%=%=(800∙10∙3,6)/(3200∙10) ∙100%=90%.

Видео по теме

Источники:

  • как определить кпд

КПД (коэффициент полезного действия) – безразмерная величина, характеризующая эффективность работы. Работа есть сила, влияющая на процесс в течение некоторого времени. На действие силы затрачивается энергия. Энергия вкладывается в силу, сила вкладывается в работу, работа характеризуется результативностью.

Инструкция

Расчет КПД с определения энергии, потраченной непосредственно для достижения результата. Она может быть выражена в единицах, необходимых для достижения результата энергии, силы, мощности.
Чтобы не ошибиться, полезно держать в уме следующую схему. Простейшая включает в себя элемента: «рабочий », источник энергии, органы управления, пути и элементы проведения и преобразования энергии. Энергия, потраченная на достижение результата – это энергия, затраченная только «рабочим инструментом».

Далее вы определяете энергию, реально потраченную всей системой в процессе достижения результата. То есть не только «рабочим инструментом», но и органами управления, преобразователями энергии, а также к затратам следует отнести энергию, рассеянную в путях проведения энергии.

И далее вы подсчитываете коэффициент полезного действия по формуле:
К.П.Д. = (А / В)*100%, где
А – энергия, необходимая на достижение результата
В – энергия, реально затраченная системой на достижение результатов.Например: на проведение электроинструментальных работ было потрачено 100 кВт, при этом вся энергосистема цеха за это время потребила 120 кВт. КПД системы (энергосистемы цеха) в этом случае будет равен 100 кВт / 120 кВт = 0.83*100% = 83%.

Видео по теме

Обратите внимание

Часто понятие КПД применяют, оценивая отношение запланированных расходов энергии и реально потраченных. Например, соотношение запланированных объемов работ (или времени, необходимого для выполнения работы) к реально произведенным работам и потраченному времени. Здесь следует быть предельно внимательным. Например, запланировали затратить на работы 200 кВт, а затратили 100 кВт. Или запланировали произвести работы за 1 час, а затратили 0.5 часа; в обоих случаях КПД получается 200%, что невозможно. На самом деле в таких случаях имеет место, как говорят экономисты, «стахановский синдром», то есть сознательное занижение плана по отношению к реально необходимым затратам.

Полезный совет

1. Затраты энергии вы должны оценивать в одних и тех же единицах.

2. Затраченная всей системой энергия не может быть меньше потраченной непосредственно на достижение результата, то есть КПД не может быть больше 100%.

Источники:

  • как посчитать энергии

Совет 3: Как рассчитать эффективность танка в игре World of Tanks

Рейтинг эффективности танка или его КПД – один из комплексных показателей игрового мастерства. Его учитывают при приеме в топовые кланы, в киберспортивные команды, в роты. Формула расчета довольно сложна, поэтому игроки пользуются различными онлайн-калькуляторами.

Формула расчета

Одна из первых формул расчета выглядела так:
R=K x (350 – 20 x L) + Ddmg x (0,2 + 1,5 / L) + S x 200 + Ddef x 150 + C x 150

Сама формула приведена на картинке. В этой формуле имеются следующие переменные:
- R – боевая эффективность игрока;
- К – среднее количество уничтоженных танков (общее количество фрагов, деленное на общее количество боев):
- L – средний уровень танка;
- S – среднее количество обнаруженных танков;
- Ddmg – среднее количество нанесенного урона за бой;
- Ddef – среднее количество очков защиты базы;
- С – среднее количество очков захвата базы.

Значение полученных цифр:
- менее 600 – плохой игрок; такой КПД имеют около 6% всех игроков;
- от 600 до 900 – игрок ниже среднего; такой КПД имеют 25% всех игроков;
- от 900 до 1200 – средний игрок; такую эффективность имеют 43% игроков;
- от 1200 и выше – сильный игрок; таких игроков около 25%;
- свыше 1800 – уникальный игрок; таких не более 1%.

Американские игроки используют свою формулу WN6, выглядящую так:
wn6=(1240 – 1040 / (MIN (TIER,6)) ^ 0.164) x FRAGS + DAMAGE x 530 / (184 x e ^ (0.24 x TIER) + 130) + SPOT x 125 + MIN(DEF,2.2) x 100 + ((185 / (0.17+ e ^ ((WINRATE - 35) x 0.134))) - 500) x 0.45 + (6-MIN(TIER,6)) x 60

В этой формуле:
MIN (TIER,6) – средний уровень танка игрока, если он больше 6, используется значение 6
FRAGS – среднее количество уничтоженных танков
TIER – средний уровень танков игрока
DAMAGE – средний урон в бою
MIN (DEF,2,2) – среднее количество сбитых очков захвата базы, если значение больше 2,2 используется 2,2
WINRATE – общий процент побед

Как видно, в этой формуле не учитываются очки захвата базы, количество фрагов на низкоуровневой технике, процент побед и влияние начального засвета на рейтинге сказываются не очень сильно.

Компания Wargeiming ввела в обновлении показатель личного рейтинга эффективности игрока, который рассчитывается по более сложной формуле, учитывающей все возможные статистические показатели.

Как повысить эффективность

Из формулы Кх(350-20хL) видно, что чем выше уровень танка, тем меньшее количество очков эффективности получается за уничтожение танков, зато большее за нанесение урона. Поэтому, играя на низкоуровневой технике, старайтесь брать больше фрагов. На высокоуровневой – наносить больше урона (дамага). Количество очков полученных или сбитых очков захвата базы на рейтинг влияют несильно, причем за сбитые очки захвата очков КПД начисляется больше, чем за полученные очки захвата базы.

Поэтому большинство игроков улучшают свою статистику, играя на низших уровней, в так называемой песочнице. Во-первых, большинство игроков на низших уровнях – новички, не имеющие навыков, не использующие прокачанный экипаж с умениями и навыками, не использующие дополнительное оборудование, не знающие преимуществ и недостатков того или иного танка.

Независимо от того, на какой технике играете, старайтесь сбивать как можно большее количество очков захвата базы. Взводные бои сильно повышают рейтинг эффективности, так как игроки во взводе действуют скоординировано и чаще добиваются победы.

Термин «КПД» - это аббревиатура, образованная от словосочетания «коэффициент полезного действия». В самом общем виде он представляет собой соотношение затраченных ресурсов и результата выполненной с их использованием работы.

КПД

Понятие коэффициента полезного действия (КПД) может быть применено к самым различным типам устройств и механизмов, работа которых основана на использовании каких-либо ресурсов. Так, если в качестве такого ресурса рассматривать энергию, используемую для работы системы, то результатом этого следует считать объем полезной работы, выполненной на этой энергии.

В общем виде формулу КПД можно записать следующим образом: n = A*100%/Q. В данной формуле символ n применяется в качестве обозначения КПД, символ A представляет собой объем выполненной работы, а Q - объем затраченной энергии. При этом стоит подчеркнуть, что единицей измерения КПД являются проценты. Теоретически максимальная величина этого коэффициента составляет 100%, однако на практике достигнуть такого показателя практически невозможно, так как в работе каждого механизма присутствуют те или иные потери энергии.

КПД двигателя

Двигатель внутреннего сгорания (ДВС), представляющий собой один из ключевых компонентов механизма современного автомобиля, также представляет собой вариант системы, основанной на использовании ресурса - бензина или дизельного топлива. Поэтому для нее можно рассчитать величину КПД.

Несмотря на все технические достижения автомобильной промышленности, стандартный КПД ДВС остается достаточно низким: в зависимости от использованных при конструировании двигателя технологий он может составлять от 25% до 60%. Это связано с тем, что работа такого двигателя сопряжена со значительными потерями энергии.

Так, наибольшие потери эффективности работы ДВС приходятся на работу системы охлаждения, которая забирает до 40% энергии, выработанной двигателем. Значительная часть энергии - до 25% - теряется в процессе отведения отработанных газов, то есть попросту уносится в атмосферу. Наконец, примерно 10% энергии, вырабатываемой двигателем, уходит на преодоление трения между различными деталями ДВС.

Поэтому технологи и инженеры, занятые в автомобильной промышленности, прилагают значительные усилия для повышения КПД двигателей путем сокращения потерь по всем перечисленным статьям. Так, основное направление конструкторских разработок, направленное на уменьшение потерь, касающихся работы системы охлаждения, связано с попытками уменьшить размер поверхностей, через которые происходит теплоотдача. Уменьшение потерь в процессе газообмена производится преимущественно с использованием системы турбонаддува, а снижение потерь, связанных с трением, - посредством применения более технологичных и современных материалов при конструировании двигателя. Как утверждают специалисты, применение этих и других технологий способно поднять КПД ДВС до уровня 80% и выше.

Видео по теме

Источники:

  • О ДВС, его резервах и перспективах развития глазами специалиста

В электрической или электронной схеме есть два типа элементов: пассивные и активные. Активный элемент способен непрерывно подавать энергию в цепь – аккумулятор, генератор. Пассивные элементы – резисторы, конденсаторы, катушки индуктивности, только потребляют энергию.

Что такое источник тока

Источник тока – это устройство, непрерывно питающее цепь электроэнергией. Он может быть источником постоянного тока и переменного. Аккумуляторные батареи – это источники постоянного тока, а электророзетка – переменного.

Одна из интереснейших характеристик питающих источников они способны преобразовывать неэлектрическую энергию в электрическую, например:

  • химическую в батареях;
  • механическую в генераторах;
  • солнечную и т. д.

Электрические источники делятся на:

  1. Независимые;
  2. Зависимые (контролируемые), выход которых зависит от напряжения или тока в другом месте схемы, который может быть либо постоянным, либо меняющимся во времени. Используются в качестве эквивалентных ИП для электронных устройств.

Когда говорят о законах цепи и анализе, электрические ИП часто рассматриваются как идеальные, то есть теоретически способные обеспечить бесконечное количество энергии без потерь, имея при этом характеристики, представленные прямой линией. Однако в реальных, или практических, источниках всегда есть внутреннее сопротивление, влияющее на их выход.

Важно! ИП могут быть соединены параллельно, только если имеют одинаковое значение напряжения. Последовательное соединение будет влиять на выходной показатель напряжения.

Внутреннее сопротивление ИП представляется как последовательно соединенное со схемой.

Мощность источника тока и внутреннее сопротивление

Пусть рассматривается простая схема, в которой аккумулятор имеет ЭДС Е и внутреннее сопротивление r и подает ток I на внешний резистор сопротивлением R. Внешний резистор может быть любой активной нагрузкой. Основной целью схемы является передача энергии от батареи к нагрузке, где она делает что-то полезное, например, идет на освещение помещения.

Можно вывести зависимость полезной мощности от сопротивления:

  1. Эквивалентное сопротивление схемы – R + r (так как сопротивление нагрузки включено последовательно с внешней нагрузкой);
  2. Ток, протекающий в цепи, будет определяться выражением:
  1. Выходная мощность ЭДС:

Рвых. = E x I = E²/(R + r);

  1. Мощность, рассеиваемая как тепло, при внутреннем сопротивлении батареи:

Pr = I² x r = E² x r/(R + r)²;

  1. Мощность, передаваемая нагрузке:

P(R) = I² x R = E² x R/(R + r)²;

  1. Рвых. = Рr + P(R).

Таким образом, часть выходной энергии батареи сразу теряется из-за рассеивания тепла на внутреннем сопротивлении.

Теперь можно построить график зависимости P(R) от R и выяснить, при какой нагрузке полезная мощность примет максимальное значение. При анализе функции на экстремум выясняется, что при увеличении R будет монотонно возрастать и P(R) до того пункта, когда R не сравняется с r. В этой точке полезная мощность будет максимальной, а затем начинает монотонно уменьшаться при дальнейшем увеличении R.

P(R)max = E²/4r, когда R = r. При этом I = E/2r.

Важно! Это очень значимый результат в электротехнике. Передача энергии между источником питания и внешней нагрузкой наиболее эффективна, когда сопротивление нагрузки соответствует внутреннему сопротивлению источника тока.

Если сопротивление нагрузки слишком велико, то ток, протекающий по цепи мал, чтобы передавать энергию на нагрузку с заметной скоростью. Если сопротивление нагрузки слишком низкое, то большая часть выходной энергии рассеивается как тепло внутри самого ИП.

Это условие получило название согласования. Одним из примеров соответствия сопротивления источника и внешней нагрузки является звуковой усилитель и громкоговоритель. Выходной импеданс Zout усилителя задается от 4 до 8 Ом, а номинальный входной импеданс динамика Zin только 8 Ом. Затем, если громкоговоритель 8 Ом будет подключен к выходу усилителя, он будет видеть динамик в качестве нагрузки 8 Ом. Подключение двух громкоговорителей на 8 Ом параллельно друг другу эквивалентно усилителю, работающему на одном громкоговорителе 4 Ом, и обе конфигурации находятся в пределах выходных характеристик усилителя.

КПД источника тока

При совершении работы электрическим током происходят преобразования энергии. Полная работа, совершаемая источником, идет на энергопреобразования во всем электрическом контуре, а полезная – только в присоединенной к ИП цепи.

Количественная оценка КПД источника тока производится по самому значимому показателю, определяющему скорость совершения работы, мощности:

Далеко не вся выходная мощность ИП используется энергопотребителем. Соотношение потребленной энергии и выданной источником представляет собой формулу коэффициента полезного действия:

η = полезная мощность/выходная мощность = Pпол./Рвых.

Важно! Так как Pпол. практически в любом случае меньше, чем Рвых, η не может быть больше 1.

Эту формулу можно преобразовать, подставляя выражения для мощностей:

  1. Выходная мощность источника:

Рвых. = I x E = I² x (R + r) x t;

  1. Потребленная энергия:

Рпол. = I x U = I² x R x t;

  1. Коэффициент:

η = Рпол./Рвых. = (I² x R x t)/(I² x (R + r) x t) = R/(R + r).

То есть у источника тока КПД определяется соотношением сопротивлений: внутреннего и нагрузочного.

Часто показателем КПД оперируют в процентах. Тогда формула примет вид:

η = R/(R + r) x 100%.

Из полученного выражения видно, что при соблюдении условия согласования (R = r) коэффициент η = (R/2 x R) х 100% = 50%. Когда передаваемая энергия наиболее эффективна, КПД самого ИП оказывается равным всего 50%.

Пользуясь этим коэффициентом, оценивают эффективность различных ИП и потребителей электроэнергии.

Примеры значений КПД:

  • газовая турбина – 40%;
  • солнечная батарея – 15-20%;
  • литий-ионный аккумулятор – 89-90%;
  • электронагреватель – приближается к 100%;
  • лампа накаливания – 5-10%;
  • светодиодная лампа – 5-50%;
  • холодильные установки – 20-50%.

Показатели полезной мощности рассчитываются для разных потребителей в зависимости от вида совершаемой работы.

Видео