Способы очистки и опреснения воды в мире. Опреснение колодезной воды

Все мы знаем, что человек на две трети состоит из воды. И если без пищи наш организм может продержаться примерно месяц, то без воды в лучшем случае всего неделю (порой гораздо меньше). Человеку необходимо ежедневно потреблять достаточное количество пресной воды во избежание возникновения проблем со здоровьем. Опреснитель морской воды и механизм его функционирования - тема более чем актуальная.

Промышленная очистка

Активный рост населения напрямую повлиял на количество источников пресной воды на нашей планете. В результате этого возникла ее нехватка, что подтолкнуло людей к поискам различных способов изготовления питьевой воды «вручную». Единственным выходом стала возможность опреснения солёной морской воды, не пригодной для питья.

Источником для стал Мировой океан. Морские воды проходят многочисленные этапы очистки, в результате которых жидкость избавляется от лишнего количества различных солей. На помощь приходит использование специализированных установок.

Применение опреснителей морской воды позволяет успешно доводить ее до состояния питьевой. Опреснение воды в промышленных масштабах производится разными способами. Большинство таких методов базируются на использовании габаритных энергоёмких установок. Это специализированные фильтры и дистилляторы. Рассмотрим основные виды опреснения воды в больших объёмах.

Методы очищения

В нашем мире разработано всего несколько технологий, которые позволяют преобразовывать морскую воду в проточную. Один из них - использование химических реагентов. Такой метод подразумевает применение специальных химических составов для опреснения жидкости. При соприкосновении с возникает реакция, в результате которой образуются нерастворимые химические соединения.

После завершения реакции остаётся всего лишь убрать получившийся осадок путём отфильтровывания. Данный способ не используется в повседневной жизни, и крайне редко им пользуются для опреснения воды в промышленности.

Этот метод имеет достаточно весомые недостатки. Во-первых, для осуществления опреснения потребуется немалое количество химических веществ, во-вторых, процесс занимает длительное время и, в-третьих, стоит недёшево.

Метод обратного осмоса

Жидкость с избыточным количеством солей пропускается через эти мембраны под определённым давлением. Вследствие этого частицы жидкости проходят через микроскопическую сетку, на поверхности которой оседают более крупные частицы различных примесей. Благодаря этому способу возможно получение довольно большого объёма опреснённой воды.

Принцип работы опреснителя морской воды

Опреснитель морской воды - устройство, которое позволяет убирать из жидкости растворённые в ней соли. После прохождения такой процедуры получается очищенная вода. Её можно использовать не только в бытовой жизни, но так же и как хорошую питьевую воду.

Особенность конструкции аппарата отличается удобностью и практичностью в эксплуатации. Но пресная не означает чистая. Ведь в ней, так или иначе, сохраняются разные компоненты. От их плотности зависит непосредственно использование полученной воды. Например, на морских суднах требуются совершенно разные виды воды:

  • питьевая - исключительно для готовки и питья;
  • вода для личной гигиены и мытья палубы;
  • вода для парогенераторов, иначе её называют питательной;
  • вода технического назначения (применяется как охлаждающая жидкость для двигателей);
  • дистиллированная вода.

Для всех этих видов используются разные судовые опреснители морской воды.
Все методики делятся на две категории:

  1. Дистилляционную - опреснитель, который работает по принципу дистилляции, нагревает и испаряет морскую воду. Затем пар «ловится» и доводится до нужной температуры.
  2. Фильтрационное - принцип Соленая вода опресняется без перехода из одного агрегатного состояния в другое.

Его работа основана на «выравнивании» концентрации растворённых примесей. Крайне высокое давление позволяет как бы «выдавливать» ненужные частицы солей.

Самый большой в мире опреснитель морской воды находится в По своей масштабности этот агрегат напоминает практически целый завод. Ежегодно он опресняет около тридцати трёх миллиардов галлонов морской воды.

Это покрывает две трети объёма от всей потребности страны. Ведь, как известно, в Израиле остро стоит вопрос нехватки питьевой жидкости. Этот опреснитель морской воды работает, как и большинство всех опреснителей, по принципу обратного осмоса, под воздействием которого воды Средиземного моря не подвергаются тепловой обработке.

Солнечный опреснитель морской воды

В последнее время на прилавках магазинов появились уникальные опреснители, взаимодействующие при работе с солнечной энергией. Внутрь прибора заливается морская вода, от полученного солнечного тепла она превращается в пар, конденсируясь на стенках корпуса, и оседает в нижней части приёмника.

Конструкция установки полностью герметична, она может создать парниковый эффект и не допускает испарений извне опреснителя. Соответственно, в результате этого чистой воды сохраняется больше. По окончании этого процесса достаточно просто открутить пробку и слить очищенную воду в какой-нибудь сосуд.

Вакуумный опреснитель морской воды

Этот вид опреснителей используют в морском флоте. Он утилизирует тепло жидкости, которая охлаждает главные и вспомогательные дизели. Чистая вода, нагретая до примерно шестидесяти градусов по Цельсию, на входе поступает через трубы батареи нагрева. На выходе температура воды снижается приблизительно до пятидесяти пяти градусов по Цельсию.

Вакуумный опреснитель позволяет за час получить около восьмисот литров дистиллированной воды. Данный вид опреснителя может покрыть практически все нужды пресной воды без лишних расходов на топливную энергию и сервисное обслуживание. Устройство полностью автоматизировано. Так как температура испарений достаточно низкая, водоопреснитель может работать без очистки на протяжении шести-двенадцати месяцев.

Обслуживание прибора

Техническое обслуживание устройства следует осуществлять каждую неделю, каждый месяц и один раз в квартал.

Раз в неделю требуется внешний осмотр прибора. Стоит также проверить правильность работы насосных сальников и редко использующихся клапанов. Устранить неплотные прилегания и всевозможные протекания в стыках. Раз в месяц сверх еженедельного осмотра требуется проводить чистку сетки фильтра забортной воды, а также смазывать подшипники насосов. Раз в квартал проверяется расходомер, проводится замена протекторов на трубах, рассола и насосах. Очищаются распыливающие отверстия кольцевой трубки испарителя, осуществляется замена у насосов.

Ремонтные работы

Процесс ремонта заключается в проведении химической соленой воды и испарителя-конденсатора с их последующей опрессовкой и подвальцовкой дефектных трубок.

Следует вскрыть подогреватель жидкости, очистить фильтры из труб и сами трубки от различного мусора и образовавшейся накипи. Также следует разобрать расходомер с целью его очищения от грязи и ржавчины. Если подшипники насосов изношены, то их требуется заменить. Дополнительно рекомендуется провести очищение поверхностей корпусов, соприкасающихся с забортной водой.

Опреснители морской воды для яхт

Наличие системы опреснения морской воды на борту небольшого судна - это комфортно и безопасно. Ручной опреснитель морской воды позволяет сэкономить бюджет ввиду отсутствия потребности в пополнении запасов чистой питьевой воды.

В среднем за час такой опреснитель, предназначенный для небольших морских судов, обрабатывает сотни литров солёной воды, превращая её в чистую питьевую.

Некоторые модели опреснителей для яхт имеют функцию дистанционного управления, что значительно облегчает контроль над процессом. Такие установки подходят для использования как на парусных, так и на моторных яхтах. Запчасти судовых опреснителей, непосредственно соприкасающиеся с морской водой, изготавливаются из веществ, не поражаемых коррозией. Внешняя конструкция чаще всего сделана из нержавеющей стали.

Портативный прибор для очищения воды

Совсем недавно научные сотрудники анонсировали новое оригинальное устройство, созданное специально для разделения морской воды на питьевую и соленую. Львиная доля опреснителей работает по технологии обратного осмоса, потребляя при этом достаточно большое количество электроэнергии. К минусам данного способа опреснения можно также отнести неэффективность работы с малыми объёмами.

Новое изобретение - портативный опреснитель морской воды основан на технологии поляризации концентрации ионов. Наноразмерный канал заполняется жидкостью, подключается электрический ток, который создаёт электрическое поле. Благодаря этому вода разделяется на два параллельных потока. В один из них попадают ионы солей, в другом же потоке оказывается чистая пресная вода.

Создатели планируют довести до ума новое устройство, которое будет питаться энергией алкалиновой батарейки. Планируемая скорость опреснения воды - около пятнадцати литров в час. Изобретение обещают пустить в массы в ближайшие два года.

Как сделать опреснитель морской воды своими руками?

Воду можно сделать чистой и без использования промышленных приспособлений. Сделать ручной опреснитель не составит особого труда. Для этого вам потребуется кастрюля с плотно прилегающей крышкой.

Такой способ опреснения воды основывается на всем известном физическом явлении - конденсации. Наливаем в кастрюлю морскую воду, закрываем крышку и кипятим. Скопившийся под крышкой пар - чистый конденсат. Все водные примеси имеют большую массу, поэтому они оседают на дно кастрюли, а частицы Н 2 О конденсируются в виде пара.

Этот способ позволяет опреснять жидкость с большим количеством потери чистой воды. Поэтому конструкцию следует немного усовершенствовать. Для этого потребуется сделать в крышке кастрюли небольшое отверстие, вставить в него гибкий шланг (трубку), кастрюлю прикрыть крышкой. Другой конец шланга направьте в следующую кастрюлю (любую ёмкость) и обязательно сверху накройте смоченным полотенцем. Это поможет пару оставаться нагретым.

Ставим морскую воду на огонь и кипятим. Ждём до тех пор, пока вся вода не «перейдёт» в другую кастрюлю. Это и будет опреснённая питьевая вода. Все соли, а также различные примеси останутся в прежней кастрюле. Вот такой нехитрый, сделанный своими руками опреснитель морской воды поможет добыть чистую питьевую воду.

Ещё один способ опреснить солёную воду - просто её заморозить. Дело в том, что температура замерзания морской воды и пресной несколько отличается. Для замерзания солёной требуется температура более низкая, нежели для замерзания пресной. Получившийся в итоге лёд и есть опреснённая вода, которая вполне может быть пригодна для питья.

Опреснитель морской воды - вещь, безусловно, нужная, но только для промышленных масштабов. Дома можно преобразовать морскую воду в питьевую с помощью нехитрых приемов, с которыми мы сегодня познакомились. Так что теперь можно не переживать о том, что в экстренной ситуации недостаток воды может перерасти в серьезную проблему.

Существующие разнообразные способы опреснения забортной морской воды можно разделить на две основные группы:

  • 1)опреснение без изменения агрегатного состояния жидкости (воды);
  • 2)опреснение, связанное с промежуточным переходом жидкого агрегатного состояния в твердое или газообразное (паровое).

Опреснение способами первой группы включает в себя такие виды, как химическое, электрохимическое, ультрафильтрация.

При химическом способе опреснения в воду вводят вещества, называемые реагентами, которые, взаимодействуя с находящимися в ней ионами солей, образуют нерастворимые, выпадающие в осадок вещества. Вследствие того, что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3-5 % количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с натрием и хлором, относятся ионы серебра и бария, которые образуют выпадающие в осадок хлористое серебро и сернокислый барий. Эти реагенты дорогие, реакция осаждения с солями бария протекает медленно, соли ядовиты. Поэтому химическое опреснение используется редко.

При электрохимическом опреснении (электродиализе) применяют специальные электрохимические активные диафрагмы, состоящие из пластмассы, резины с наполнителем и анионитовых или катионитовых смол. Ванна с рассолом ограничена двумя диафрагмами: положительной и отрицательной. Под действием постоянного тока напряжением 110120 В ионы солей, растворенных в воде, устремляются к электродам. Положительные катионы через катион проницаемые диафрагмы, а анионы через анионитовую диафрагму проходят в крайние камеры, где встречаются с двумя пластинами: анодом и катодом. Встречаясь с одноименно заряженными диафрагмами, они остаются в этих камерах. В результате в промежуточных камерах оказывается обессоленная вода, которая стекает в отдельный сборник. Соли и рассолы из крайних камер отводятся за борт, а образующиеся газы (хлор и кислород) в атмосферу. Камеры, в которых опресняется вода, отделены от рассольных камер полупроницаемыми ионитовыми мембранами. При достаточном количестве пар мембран между анодом и катодом расход электроэнергии зависит от солености морской и опресненной воды: чем меньше разница между ними, тем процесс протекает экономичнее. Поэтому электродиализ целесообразно применять для опреснения слабосоленых вод при допустимом высоком солесодержании опресненной воды (5001000 мг/л). На судах, где требования к солесодержанию достаточно высокие, электродиализные опреснители не находят применения. Опытная электродиализная установка эксплуатировалась на траулере "Ногинск".

Опреснение ультрафильтрацией или так называемым способом обратного осмоса состоит в том, что солевой раствор оказывается под давлением со стороны мембраны, проницаемой для воды и непроницаемой для соли. Преснаявода проникает через мембрану в направлении, обратном обычному осмотическому (когда пресная вода вследствие осмотического давления проникает через мембрану в солевой раствор). В существующих установках производительностью около 4 м3/сут соленая вода под давлением около 150 кгс/см2 продавливается через мембраны ацетилцеллюлозного типа, обработанные перхлоратом магния для увеличения их водопроницаемости. С противоположной давлению стороны мембран установлены пористые бронзовые плиты, способные выдержать большое давление. При испытаниях установки с 1,5 %ным солевым раствором была получена вода с солесодержанием 6001000 мг/л Сl. Применение ультрафильтрации как способа опреснения ограничивается малым сроком службы пленок-мембран и большими размерами фильтрующей поверхности. К методам опреснения второй группы, относятся вымораживание и дистилляция, или термическое опреснение.

Опреснение вымораживанием основано на том, что в естественных природных условиях лед, образующийся в океанах и морях, является пресным. При искусственном медленном замораживании соленой морской воды вокруг ядер кристаллизации образуется пресный лед игольчатой структуры с вертикальным расположением игл льда. При этом в межигольчатых каналах концентрация раствора, а, следовательно, и его плотность, повышаются, и он, как более тяжелый, по мере вымораживания оседает вниз. При растаивании игольчатого льда образуется пресная вода с содержанием солей 5001000 мг/л Сl. При быстром замораживании рассол оказывается включенным в толщу льда, и сильное и интенсивное охлаждение приводит к замерзанию всей массы соленого раствора в единое ледяное тело. Для лучшего опреснения морского льда иногда применяется искусственное плавление его части при температуре ~20°С. Вода, образующаяся при таянии, способствует более полному вымыванию солей из льда. Способ вымораживания достаточно прост и экономичен, но требует сложного и громоздкого оборудования.

Дистилляция, или термическое опреснениенаиболее распространенный на морских судах способ получения пресной воды из забортной морской. Как известно, морская вода представляет собой раствор, состоящий из водылетучего растворителя и солейнелетучего растворенного в воде твердого вещества. Сущность дистилляции заключается в том, что забортную воду нагревают до кипения и выходящий пар собирают и конденсируют. Образуется пресная вода, называемая дистиллятом. Выпаривать воду можно как при кипении, так и без кипения. В последнем случае морскую воду нагревают при более высоком давлении, чем давление в камере испарения, куда направляется вода. Так как при этом температура воды превышает температуру насыщения, соответствующую давлению в камере испарения, то часть поступившей воды превращается в пар, который и конденсируется в дистиллят. Для парообразования используется теплота, содержащаяся в самой испаряемой воде, которая при этом охлаждается до температуры насыщения оставшегося рассола. Основное термодинамическое различие между процессами заключается в следующем: при кипящем процессе теплота подводится от внешнего источника и поддерживает температуру насыщения при данном постоянном давлении в испарителе, т. е. процесс является изотермическим; при некипящем процессе теплота подводится к морской воде без кипения до температуры выше температуры насыщения, соответствующей давлению в испарителе, и, следовательно, процесс испарения идет за счет внутренней теплоты и является адиабатным. Недостатком термического опреснения избыточного давления является его малая экономичность: на получение 1 кг дистиллята расходовалось до 700 ккал, что соответствует выходу 1012 т дистиллята на 1 т расходуемого топлива. Этот недостаток удалось преодолеть применением вакуумных испарителей с использованием утилизационной теплоты двигателей внутреннего сгорания и парогенераторов. Дистилляция, как уже было отмечено, основной способ опреснения морской воды, применяемый на судах торгового флота, и поэтому в дальнейшем будут рассмотрены только опреснительные установки, работающие на термическом опреснении.

В настоящее время исследуются новые способы водоопреснения, в частности путем образования кристаллогидратов и при помощи гидрофобного теплоносителя. Принцип кристаллогидратов заключается в выделении пресной воды из соленых растворов в форме кристаллов, которые в специальном расплавит еле разлагаются на чистую воду и гидрат-агент. В качестве гидрат-агентов для повторного использования в процессе используются такие вещества, как метилбромидгидраты, метилхлоридгидраты, гидраты изо-бутана. Сущность гидрофобного теплоносителя заключается в том, что различные смеси углеводородов, парафины, фторированные масла и другие вещества, инертные по отношению к воде и растворенным в ней солям, впрыскивают в теплонесущий дистиллят для нагрева. После этого дистиллят и теплоноситель разделяют и последний впрыскивают в морскую воду. При нагреве часть воды испаряется и образующийся пар в конденсаторе превращается в дистиллят. Гидрофобный теплоноситель отделяют от оставшегося после выпаривания рассола и возвращают в теплонесущий дистиллят для последующего нагрева.

Схемы опреснительных установок поверхностного и бесповерхностного типов изображены на рис. 1. В испарителе 1 поверхностного типа (рис. 1, а) находится греющая батарея 2, через которую проходит теплоносительпар или горячая вода.

Рис.1

а поверхностной (кипящей); бес поверхностной (адиабатной).

В результате нагрева и кипячения рассола в испарителе выделяется из морской воды так называемый вторичный пар, который направляется по трубопроводу в конденсатор 9. Пар охлаждается забортной водой, прокачиваемой по змеевику циркуляционным насосом 8, конденсируется и дистиллят откачивается дистиллятным насосом 7. Часть забортной воды, выходящей в подогретом состоянии из конденсатора, отводится через регулятор уровня 6 в испаритель. Для поддержания постоянной солености рассола в испарителе производится продувание рассольным насосом 4.

В установке с бесповерхностным испарителем 1 (рис. 1, б) отсутствуют греющие элементы с твердой поверхностью для теплопередачи. Морская вода перед поступлением в испаритель предварительно нагревается в подогревателе 3 теплоносителем до температуры, которая превышает температуру насыщения, соответствующую давлению, поддерживаемому в испарителе. При поступлении воды из подогревателя, где вода не кипит, так как давление в нем более высокое, в испаритель с более низким давлением происходит самоиспарение некоторой части воды за счет внутренней теплоты. Образовавшийся пар, как и в предыдущей схеме, поступает в конденсатор 9, прокачиваемый забортной водой от насоса 8, конденсируется и откачивается дистиллятным насосом 7. Часть прокачиваемой охлаждающей воды отводится для питания испарителя через регулятор уровня 6. Неиспарившаяся вода из испарителя циркуляционным рассольным насосом 5 многократно прокачивается через подогреватель 3 и вновь поступает на испарение, при этом часть рассола выдувается за борт через клапан. Преимущество бесповерхностных испарителей заключается в том, что вследствие отсутствия поверхности нагрева в них не образуется накипь, но они требуют установки насосов большей производительности.

Кроме рассмотренного основного признака способа испарения дистилляционные опреснительные установки можно классифицировать по ряду других признаков:

по назначению: опреснительные для получения питьевой воды; испарительные для получения котловой воды; комбинированные для получения питьевой, мытьевой и питательной воды;

  • -по роду теплоносителя: паровые, водяные, газовые, электрические;
  • -по давлению в испарителе: избыточного давления; вакуумные;
  • -по способу регенерации теплоты: компрессионные, в которых вторичный пар сжимается и используется в качестве греющего; ступенчатые, в которых пар, получаемый в предыдущих испарителях, используется в качестве греющего пара в последующих;
  • -по связи с судовой энергетической установкой: автономные, не связанные с работой СЭУ; неавтономные, включаемые в цикл работы главных и вспомогательных дизелей и парогенераторов. К ним относятся распространенные на промысловых судах утилизационные опреснительные установки, использующие теплоту водяной системы охлаждения главных двигателей.

Конструкция испарителя поверхностного типа (рис.2) вакуумной опреснительной установки СРТ с использованием в качестве теплоносителя отработавших газов от главного дизеля показана на рис. 2. Испаритель состоит из цилиндрического вертикального корпуса 4 с размещенными внутри двумя трубными решетками 5 и 9, к которым приварены трубки 8, расположенные в шахматном порядке. В межтрубном пространстве имеются две направляющие перегородки 7.

Отработавшие газы главного двигателя входят через патрубок 14 в межтрубное пространство, совершают два поворота, через стенки трубок передают теплоту на испарение рассола и уходят через патрубок 6 в атмосферу. В нижней крышке 13 расположены входной 12 и выходной 11 патрубки для морской воды и рассола, а также закрытый патрубок 10 с цинковым протектором для предохранения испарителя от коррозии. В верхней крышке имеются сепараторы пара: конусный 3 и сетчатый 2 с кольцами Рашига 1. Уравнительная трубка поплавкового регулятора уровня присоединена к патрубку 15. Производительность испарителя равна 500 кг/ч.

Одним из наиважнейших факторов, влияющих на качество питьевой воды, является содержание в ней солей. При слишком высокой минерализации вода приобретает солёно-горький привкус. Если количество соли превосходит допустимые нормы, это может сказаться крайне негативно на здоровье людей, употребляющих такую воду.

Также воду, содержащую большое количество соли, крайне нежелательно использовать в бытовых целях. Стиральные и посудомоечные машины, а также другая домашняя техника быстро выйдут из строя под воздействием солевых отложений. Но как опреснить воду и избежать подобных последствий?

В жилые дома вода поступает из артезианских скважин. Такая вода по всем параметрам не допускается для употребления, но за неимением другой воды люди всё равно её пьют, готовят на ней еду, используют в хозяйственных нуждах. Поэтому вода, поступающая в дома, должна быть обязательно опреснена. Артезианскую воду можно опреснить различными способами. Проблема заключается только в том, что все они являются дорогостоящими.

Самым простым методом считается дистилляция воды, но соли, образующиеся в процессе выпаривания пресной воды, засоряют трубы и ухудшают теплопроводность. Наиболее эффективный способ – это термохимическое смягчение воды. Способ довольно действенный, но и дорогой. Он существенно увеличивает себестоимость пресной воды, получаемой в процессе, а кроме того, в ходе работ образуется большое количество побочных продуктов, которые необходимо утилизировать. Всем известно, что утилизация вредных веществ очень дорогая, что также не лучшим образом сказывается на конечной цене.






Обратный осмос – это отделение с помощью мембраны пресной воды и солей, которые в ней находятся. При этом способе артезианскую воду качают под высоким давлением. Недостатками этого метода является то, что мембрана под высоким давлением может быть разорвана, а кроме того, она часто забивается, и может пропускать какое-то количество растворённой в воде соли.

Гелиоопреснение – метод, при котором в большой ёмкости с артезианской водой происходит испарение под воздействием солнечной радиации. Этот способ используется не только для опреснения пресной воды, но и для грунтовых вод. Сложности заключаются в слишком большом количестве дорогостоящей техники. Используют этот метод, как правило, в странах с большим солнечным излучением.

Как опреснить морскую воду

Люди сами начали изменять окружающую среду, активно вмешиваться в природные процессы, и как результат, получили огромные проблемы. Одной из актуальных проблем является то, что многие страны страдают от нехватки пресной воды. Чистой питьевой воды становится всё меньше и меньше. И это способствует развитию производства специализированной техники, открытию новых технологий, что позволяет опреснить морскую воду. Страны Африки, Израиль, север Европы находятся вблизи морской воды, но её невозможно использовать как питьевую. Приходится морскую воду опреснять.

Для того чтобы очистить морскую воду от примесей соли, необходимо использование дорогостоящего оборудования, которое требует больших энергозатрат. И даже несмотря на это, по всему миру имеется большое количество опреснительных установок.

Способы опреснения морской воды следующие: дистилляция, обратный осмос, вымораживание, ионный обмен, электродиализ. Дистилляция может быть мембранной, многоколонной, компрессионной. Метод вымораживания – ещё один вариант очистить морскую воду. Она охлаждается до кристаллизации, из кристаллов потом выделяется пресная вода.

В данное время наиболее распространёнными способами опреснения морской воды являются обратноосмотические фильтры для очистки, а также дистилляция. Менее востребованными методами считаются вымораживание и электродиализ.

Самый лёгкий способ очистить воду дома – это использование фильтров для воды. С их помощью вода очищается от вредных примесей и солей. Однако бытовые фильтры не способны очистить воду от всех вредных веществ. Перед тем, как приобрести и установить фильтр, необходимо получить точную информацию, какая по качеству вода поступает из водопровода. Также понадобится консультация компетентного специалиста, который посоветует, какой именно фильтр потребуется с учётом потребностей, возможностей и изначального качества воды.

Всем известна польза талой воды для здоровья человека. В домашних условиях её очень просто приготовить. В морозильную камеру помещаются стеклянные или пластиковые ёмкости с водопроводной, а ещё лучше, колодезной водой, закрытые полиэтиленовыми крышками. После того, как вода замёрзнет на треть, воду, которая не замёрзла, необходимо слить – как раз в ней остались все вредные вещества и соли. Лёд должен растаять при комнатной температуре, и вот эту талую воду следует пить.

Глобальной проблемой человечества в новом тысячелетии становится проблема получения пригодной для питья пресной воды. Дефицит пресной воды остро ощущается на территории более 40 стран, расположенных в засушливых областях земного шара и составляющих около 60% всей поверхности суши. Мировое потребление воды в начале XXI века достигло 120-150·10 9 м 3 в год. Растущий мировой дефицит пресной воды может быть скомпенсирован опреснением солёных (солесодержание более 10 г/л) и солоноватых (2-10 г/л) океанических, морских и подземных вод, запасы которых составляют 98% всей воды на земном шаре.

Пресная вода является ценной составной частью морской воды. Нехватка пресной воды все больше ощущается в индустриально развитых странах, как США и Япония, где потребность в пресной воде для бытовых нужд, сельского хозяйства и промышленности превышает имеющиеся запасы. В таких странах, как Израиль или Кувейт, где уровень осадков очень низок, запасы пресной воды не соответствуют потребностям в ней, которые возрастают в связи с модернизацией хозяйства и приростом населения. В дальнейшем человечество окажется перед необходимостью рассматривать океаны как альтернативный источник воды.

Россия по ресурсам поверхностных пресных вод занимает первое место в мире. Однако до 80% этих ресурсов приходится на районы Сибири, Севера и Дальнего Востока. Всего около 20% пресноводных источников расположено в центральных и южных областях с самой высокой плотностью населения и высокоразвитыми промышленностью и сельским хозяйством. Некоторые районы Средней Азии (Туркмения, Казахстан), Кавказа, Донбасса, юго-восточной части РФ, обладая крупнейшими минерально-сырьевыми ресурсами, не имеют источников пресной воды. Вместе с тем ряд районов нашей страны располагает большими запасами подземных вод с общей минерализацией от 1 до 35 г/л, не используемых для нужд водоснабжения из-за высокого содержания растворенных в воде солей. Эти воды могут стать источниками водоснабжения только при условии их дальнейшего опреснения.

Важным параметром морской воды при опреснении является солёность, под которой подразумевается масса (в граммах) сухих солей (преимущественно NaCl) в 1 кг морской воды. Средняя солёность вод мирового океана постоянна и составляет 35 г/кг морской воды.

Наряду с NaCl в морской воде содержатся K + , Mg 2+ , Ca 2+ , Sr 2+ , Br - , F - , H 3 BO 3 , которые можно получать из морской воды в промышленных масштабах (Таблица). Среди других веществ, содержащихся в морской воде в концентрациях от 1 млн. д. до 0,01 млн. д., встречаются литий (Li), рубидий (Rb), фосфор (P), йод (J), железо (Fe), цинк (Zn) и молибден (Mo). Кроме этих элементов в морской воде обнаружено около 30 других элементов в более низких концентрациях.

Химические вещества, содержащиеся в мор ской воде
в концентрации выше 0,001 г/кг (1 млн.д.) по
весу

Высокая концентрация солей делает морскую воду непригодной для питьевых и хозяйственных целей. Поэтому её необходимо опреснять, т.е. проводить обработку с целью снижения концентрации растворённых солей до 1 г/л. Опреснение воды может осуществляться химическими (химическое осаждение, ионный обмен), физическими (дистилляция, обратный осмос или гиперфильтрация, электродиализ, вымораживание) и биологическими методами с использованием способности некоторых фотосинтезирующих водорослей избирательно поглощать NaCl из морской воды.

За последние годы были также предложены новые альтернативные методы опреснения морской воды за счёт воздействия ультразвуком, акустическими, ударными волнами, электромагнитными полями и др.

Многообразие существующих методов получения пресной воды объясняется тем, что ни один из них не может считаться универсальным, приемлемым для данных конкретных условий. Характеристики методов опреснения, получивших наибольшее практическое применение приводятся ниже.

Химическое опреснение

При химическом способе опреснения в морскую воду вводят специальные осаждающие реагенты, которые при взаимодействии с растворёнными в ней ионами солей (хлориды, сульфаты), образуют нерастворимые, выпадающие в осадок соединения. Вследствие того, что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3-5% количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с ионами натрия (Na +) и хлора (Cl -), относятся соли серебра (Ag +) и бария (Ba 2+), которые при обработке солёной воды образуют выпадающие в осадок хлористое серебро (AgCl) и сернокислый барий (BaSO 4). Эти реагенты дорогостоящие, реакция осаждения с солями бария протекает медленно, соли бария токсичны. Поэтому химическое осаждение при опреснении воды используется очень редко.

Дистилляция

Дисцилляция воды (перегонка) основана на различии в составе воды и образующегося из нее пара. Процесс осуществляется в специальных дистилляционных установках – опреснителях путем частичного испарения воды и последующей конденсации пара. В процессе дистилляции более летучий компонент (низкокипящий) переходит в паровую фазу в большем количестве, чем менее летучий (высококипящий). Поэтому при конденсации образовавшихся паров в дистиллят переходят низкокипящие, а в кубовый остаток - высококипящие компоненты. Если из исходной смеси отгоняется не одна фракция, а несколько, дистилляция называется фракционной (дробной). В зависимости от условий процесса различают простую и молекулярную дистилляцию.

Дистилляционная опреснительная установка состоит из испарителя 1, снабженного теплообменным устройством для подвода к воде необходимого количества теплоты; нагревательного элемента 2 для частичной конденсации пара, выходящего из испарителя (при фракционной дистилляции); конденсатора 3 для конденсации отбираемого пара; насоса 4; сборников дистиллята 5 и кубового остатка 6 (рис. 1).

Рис. 1 . Схема одноступенчатого дистилляционного опреснителя: 1 - корпус испарительной камеры; 2 - нагревательный элемент; 3 - конденсатор; 4 - насос; 5 - сборник дистиллята.

Современные дистилляционные опреснители подразделяются на одноступенчатые, многоступенчатые с трубчатыми нагревательными элементами, или испарителями, многоступенчатые с мгновенным вскипанием и парокомпрессионные.

Многоступенчатый испаритель (рис. 2) состоит из ряда последовательно работающих испарительных камер с трубчатыми нагревательными элементами. Нагреваемая солёная вода движется внутри трубок нагревательного элемента, греющий пар конденсируется на внешней поверхности. При этом нагрев и испарение воды в первой ступени осуществляются паром рабочего котла, работающего на дистилляте; греющим паром следующей ступеней служит вторичный пар предыдущей испарительной камеры. Данная установка способна вырабатывать около 0.9 т. пресной воды на 1 т. первичного пара. Расход тепла на получение 1 кг пресной воды в одноступенчатом дистилляционном опреснителе составляет около 2400 кдж.


Рис. 2. Схема многоступенчатого дистилляционного опреснителя с трубчатыми нагревательными элементами: 1 - испарительные камеры 1, 2, 3 и 4-й ступеней; 2 - трубчатые нагревательные элементы; 3 - концевой конденсатор; 4 - брызгоулавливатель; 5 - насос.

В опреснителях с мгновенным вскипанием (рис. 3) солёная вода проходит последовательно через конденсаторы, встроенные в испарительные камеры, нагреваясь за счёт тепла конденсации, затем поступает в главный подогреватель и нагревается выше температуры кипения воды в первой испарительной камере, где происходит процесс кипения. Затем пар конденсируется на поверхности трубок конденсатора, а конденсат стекает в конденсатор и насосом откачивается потребителю. Неиспарившаяся вода перетекает через гидрозатвор в следующую камеру с более низким давлением, где она снова вскипает, и т.д. Рекуперация тепла фазового перехода в многоступенчатом опреснителе позволяет снизить расход тепла по сравнению с одноступенчатым дистилляционным опреснителем на 1 кг пресной воды до 250-300 кдж.


Рис. 3. Схема многоступенчатого дистилляционного опреснителя с мгновенным вскипанием: I, II, III, IV и N - камеры испарения; 1 - насос; 2 - паровой эжектор; 3 - конденсатор эжектора; 4 - подогреватель; 5 - брызгоулавливатель; 6 - конденсатор; 7 - поддон для сбора конденсата.

Основным преимуществом многоступенчатых дистилляционных опреснительных установок является то, что на единицу первичного пара можно получить значительно большее количество обессоленной воды. Так при одноступенчатом испарении на 1 т первичного пара получают около 0.9 т опресненной воды, а на установках, имеющих 50-60 ступеней – 15-20 т опресненной воды. Удельный расход электроэнергии в дистилляционных установках составляет 3,5-4,5 кВт час/м 3 дистиллята.

Затраты при осуществлении любого варианта процесса дистилляции связана с большими затратами тепловой энергии, составляющими 40% от стоимости получаемой воды (если проводить дистилляцию в вакууме, температура кипения воды понижается до 60 0 С и дистилляция требует меньших тепловых затрат). В качестве источников тепловой энергии используются атомные и тепловые электростанции. Сочетание дистилляционной установки с тепловой электростанцией на минеральном или ядерном топливе, так называемая многоцелевая энергетическая установка, позволяет обеспечить промышленный район всеми видами энергетических услуг по минимальной себестоимости при наиболее рациональном использовании топлива. В пустынных южных районах и на безводных островах применяются солнечные опреснители; которые производят в летние месяцы около 4 л воды в сутки с 1 м 2 поверхности, воспринимающей солнечную радиацию.

Эффективность работы дистилляционных испарителей ограничена образованием накипи в системе циркуляции горячего рассола. По мере выпаривания морской воды из дистилляционого опреснителя, раствор соли становится более концентрированным, и в конечном итоге осаждается на стенках аппарата в виде накипи из солей жёсткости, состоящих, главным образом, из хлоридов и карбонатов кальция (CaCO 3 , CaCl 2) и магния (MgCO 3 , MgCl 2), что ухудшает теплопроводность стенок теплообменника, приводит к разрушению труб и теплообменного оборудования. Это требует применения специальных антинакипных добавок, что существенно увеличивает энергозатраты на проведение дистилляции до 10 кВт час/м 3 обессоленной воды. Поэтому в последние годы предложены другие способы опреснения морской воды, которые не связаны с необходимостью ее испарения и конденсации.

Ионный обмен

Метод основан на свойстве твёрдых полимерных смол разной степени сшивки, ковалентно связанных с ионогенными группами (иониты), обратимо обмениваться ионами растворённых в воде солей (проивоионы).

В зависимости от заряда иониты подразделяются на положительно заряженные катиониты (H +) и отрицательно заряженные аниониты (OH -). В катионитах – веществах, аналогичным кислотам, анионы представлены в виде нерастворимых в воде полимеров, а катионы (Na +) подвижны и обмениваются с катионами растворов. В противоположность катионитам, аниониты - по химической структуре основания, нерастворимую структуру которых образуют катионы. Их анионы (обычно гидроксильная группа ОН -) способны обмениваться с анионами растворов.

Процесс ионнообменного опреснения воды заключается в последовательном прохождении воды через через неподвижный слой ионита в периодическом процессе или противоточным движением воды и ионита в непрерывном процессе (рис. 4). В этом процессе катионы и анионы солей обрабатываемой воды последовательно связываются с ионитами, в результате происходит её обессоливание. Соотношение ионита, анионита и катионита обычно составляет от1:1 до 1.5:1.0 по массе.

Рис. 4. Схемы ионообменного опреснения воды (М 2+ = Са 2+ , Mg 2+) на неподвижном слое ионита (а) и в противотоке (б) с движущимися слоями ионита (NaR, MR 2) и потоками воды.

Кинетика ионного обмена включает 3 последовательные стадии: перемещение сорбируемого иона к поверхности глобулы ионита (1), ионный обмен (2), перемещение вытесняемого иона внутри глобулы ионита и от его поверхности в растворе (3).

На скорость ионного обмена влияют следующие факторы: доступность фиксированных ионов внутри каркаса ионита, размер гранул ионита, температура, концентрация раствора. Общая скорость процесса ионного обмена определяется совокупностью процессов, происходящих в растворе (диффузия противоионов к грануле и от гранулы ионита) и в ионите (диффузия противоионов от поверхности к центру гранулы ионита и в обратном направлении; обмен противоионов ионита на противоионы из раствора). В условиях, приближенных к реальным условиям очистки воды, лимитирующим фактором, определяющим скорость ионного обмена, является диффузия ионов внутри гранулы ионита.

Обменная способность ионообменных смол постепенно снижается, и, в конечном итоге, исчерпывается. В этом случае требуется регенерация раствором кислоты (катионит) или щелочи (анионит), что восстанавливает исходные химические свойства смол. Катионит регенерируется 5%-м раствором серной кислоты, которую пропускают последовательно через катионит до появления кислой реакции. Удельный расход серной кислоты 55-60 г/г-экв. сорбированных катионов. Анионит регенерируется раствором 5%-ной кальцинированной соды или едкого натра с удельным расходом 70-75 г на 1 г-экв. задержанных анионов.

Ионный обмен применяется для получения обессоленной и умягчённой воды в тепловой и атомной энергетике и в промышленности; в цветной металлургии - при комплексной гидрометаллургической переработке руд, в пищевой промышленности, в медицинской промышленности при получении антибиотиков и и других лекарственных средств, а также для очистки сточных вод в целях организации оборотного водоснабжения. В настоящее время также разрабатываются ионообменные методы комплексного извлечения из океанской воды ценных минералов.

Промышленные аппараты для реализации ионного обмена подразделяются на 3 группы: установки типа смесителей-отстойников, установки с неподвижным и подвижным слоями ионита. Аппараты первого типа чаще всего используют в гидрометаллургии. В аппаратах с неподвижным слоем ионита исходные и обессоленыые растворы подаются в одном направлении (поточные схемы) или в противоположных (противоточные схемы). Такие аппараты используются для ионообменной очистки растворов, при умягчении и обессоливании морской воды. В непрерывно действующих противоточных аппаратах подвижный ионит перемещается сверху вниз под действием силы тяжести. Конструктивно противоточные аппараты подразделяются на 3 группы: со взвешенным или кипящим слоем ионита, с непрерывным движущимся слоем ионита и с двищущимся раствором через ионит.

В зависимости от заданной степени обессоливания воды проектируют одно-, двух и трех ступенчатые ионнообменные установки. Остаточное солесодержание при одноступенчатом ионообменном опреснении составляет 20 мг/л. Для получения воды с солесодержанием до 0,5 мг/л применяют установки с двухступенчатой схемой Н + - и ОН - – ионирования.

Ионообменный способ опреснения воды имеет ряд достоинств: простота оборудования, малый расход исходной воды на собственные нужды (15-20% производительности установки), малый расход электроэнергии, малый объем ных сбросных вод.

Недостаток ионообменного метода - сравнительно высокий расход реагентов, технологическая сложность процесса, который лимитируется исходным уровнем солесодержания обрабатываемой воды, определяющегося экономическими затратами. Рентабельность ионного обмена при опреснении воды обычно ограничивается исходным содержанием растворенных солей 1.5-2.5 г/л. Однако при необходимости, когда себестоимость воды не играет существенной роли, этим методом можно опреснять воду с достаточно высоким солесодержанием.

Обратный осмос

При опреснении воды методом обратного осмоса морскую воду пропускают через полупроницаемые мембраны под воздействием давления, существенно превышающего разницу осмотических давлений пресной и морской воды (для морской воды 25-50 атм.). Такие мембраны изготавливаются отечественной промышленностью из полиамида или ацетата целлюлозы и выпускаются в виде полых волокон или рулонов. Через микропоры этих мембран могут свободно проникать небольшие молекулы воды, в то время как более крупные ионы соли и другие примеси задерживаются мембраной.

Обратный осмос используется в нашей стране с начала 1970 годов в различных технологиях очистки воды от примесей, в том числе для опреснения воды. Современные промышленные установки обратного осмоса включают фильтр тонкой очистки воды, систему реагентной подготовки, насос высокого давления, блок фильтрующих модулей, блок химической промывки.

В установках по опреснению воды методом обратного осмоса трубы изготавливают из пористого материала, выложенного с внутренней стороны пленкой из ацетата целлюлозы, выполняющей функции полупроницаемой мембраны. Опреснительная установка состоит из множества аналогичных труб, уложенных параллельно друг другу, через которые насосом высокого давления (5-10 Мн /м 2 , или 50-100 бар ) непрерывно прокачивается морская вода, а отводится два потока -обессоленная - пермеат, и вода с концентрированными солями - концентрат, которая сливается в сток (рис. 5). Поток пресной воды через мембрану пропорционален приложенному внешнему давлению. Максимальное давление определяется собственными характеристиками обратноосмотической мембраны. При слишком высоком давлении мембрана может разорваться, забиться присутствующими в воде примесями или пропускать слишком большое количество растворенных солей. При слишком низком давлении процесс замедляется.


Рис. 5. Схема процесса опреснения воды методом обратного осмоса.

Обратный осмос обладает существенными преимуществами по-сравнению с другими методами опреснения воды: энергетические затраты сравнительно невелики, установки конструктивно просты и компактны, работа их может быть легко автоматизирована. Управление системой обратного осмоса осуществляетсяв полуавтоматическом и автоматическом режиме. Для уменьшения образования нежелательных отложений солей в полостях труб применяются ингибиторы осадкообразования. Для снятия осадков солей с поверхности мембран используется система химической промывки. Для контроля качества очистки воды и значения рН - проточные измерители солесодержания и рН-метры. Контроль расхода пермеата и концентрата осуществляется проточными расходомерами.

Степень опреснения воды и производительность мембраны по опресненной воде зависят от различных факторов, прежде всего от общего солесодержания исходной воды, а также солевого состава, давления и температуры. Так, при опреснении соленой воды из скважины, содержащей 0,5% растворенных солей, при давлении 50 атм в течение суток удается получить приблизительно 700 л пресной воды с 1 м 2 мембраны. Поскольку для получения большой площади поверхности необходимо очень много тонких труб, процесс обратного осмоса не находит широкого применения для получения боль­ших количеств пресной воды. Однако этот процесс представляется весьма перспективным, если в будущем будут разработаны улучшенные низконапорные высокоселективные энергосберегающие мембраны, особенно для опреснения соле­ной воды из скважин. Эта вода имеет более низкую концентрацию растворенных со­лей по сравнению с морской водой, что позволяет проводить ее опреснение при более низких давлениях.

Электродиализ

Данный процесс мембранного разделенияоснован на способности ионов растворённых в воде солей перемещаться через мембрану под действием градиента электрического поля. При этом катионы перемещаются по направлению к отрицательному электроду (катоду), а анионы движутся в противоположном направлении к положительно заряженному электроду (аноду). Катионы и анионы разделяют, используя специальные проницаемые для ионов ионоселективные мембраны. В результате в ограниченном мембранами объёме, происходит снижение концентрации солей.

Ионноселективные мембраны, применяемые для электродиализа, изготовляют из термопластичного полимерного материала (полиэтилен, полипропилен) и ионообменных смол (КУ-2, ЭДЭ-10П и др.) в виде гибких листов прямоугольной формы. Они имеют большую механическую прочность, высокую электропроводность и высокую проницаемость для ионов. Кроме того, они обладают высокой селективностью и низким электросопротивлением, которое составляет от 2 Ом/см 2 до 10 Ом/см 2 на единицу поверхности ионообменной мембраны. Срок службы мембран в среднем 3-5 лет.

Электродиализные опреснители представляют собой многокамерные аппараты фильтр-прессового типа, состоящие из камер, ограниченных с одной стороны катионитовой, с другой - анионитовой мембранами, разделяющими объём аппарата на множество полостей. Камеры размещены между катодом и анодом, к которым подведён постоянный электрический ток (рис. 6).


Рис. 6. Схема многокамерного электродиализного опреснителя: 1 - анод; 2 - катод; 3 - анионитовая мембрана; 4 - катионитовая мембрана; В - опресняемая вода; Р - рассол.

Опресняемая вода поступает в опреснительные камеры, где под действием электрического поля катионы и анионы растворённых в воде солей движутся в противоположных направлениях к катоду и аноду соответственно. Поскольку катионитовые мембраны проницаемы в электрическом поле для катионов, но непроницаемы для анионов, а анионитовые мембраны проницаемы для анионов, но непроницаемы для катионов, в опреснительных камерах происходит селективное разделение определённых типов ионов солей. При этом удаляемые из воды соли концентрируются в рассольных камерах, откуда они удаляются вместе с промывочной солёной водой.

Расход электроэнергии на опреснение воды электродиализом зависит от исходного солесодержания опресняемой воды (2 вт·ч на 1 л при опреснении воды с солесодержанием 2,5-3 г/л и 4-5 вт· ч на 1л при опреснении воды с содержанием солей 5-6 г/л). Выход пресной воды в электродиализных установках составляет 90-95%.

В нашей стране получили распространение электродиализные опреснительные установки серии ЭДУ (ЭДУ-5, ЭДУ-50, ЭДУ-100, ЭДУ-1000), производительностью от 5 до 1000 м 3 пресной воды в сутки. Они применяются для опреснения морской воды при получении питьевой и технической воды, при обессоливании сточных вод гальванического производств (гальванических стоков), для концентрирования сточных вод, содержащих ценные компоненты (например, драгоценные металлы), перед последующим извлечением этих компонентов. Чаще всего процесс электродиализа применяют для обессоливания воды, содержащей не более 10 г/л растворённых солей. В этом случае процесс электродиализа является более экономичным по сравнению с обратным осмосом и дистиляцией. При помощи электродиализа можно также концентрировать растворы. Благодаря этому электродиализ применяется при выделения хлористого натрия (NaCl) и других солей из морской воды. Электродиализ применяется также для предочистки воды для теплоэнергетических установок.

Преимуществом электродиализа по сравнению с обратным осмосом является то, что в этом процессе используются термически и химически более стойкие мембраны, что позволяет проводить процесс опреснения воды при повышенных температурах.

Замораживание

Данный метод основан на том, что в естественных природных условиях лед, образующийся из морской воды, является пресным, поскольку образование кристаллов льда при температуре ниже температуры замерзания происходит только из молекул воды (явление криоскопии). При искусственном медленном замораживании соленой морской воды вокруг центров кристаллизации образуется пресный лед гексагональной игольчатой структуры со средней плотностью 930 кг/м 3 . При этом в межигольчатых каналах концентрация раствора и его плотность, повышаются, и он, как более тяжелый, по мере замораживания оседает вниз. При последующей сепарации, промывки и таянии кристаллического льда образуется пресная вода с содержанием солей 500-1000 мг/л NaСl.

Замораживание морской воды проводят в кристаллизаторах (контактные, вакуумные, с теплообменом через стенку) в условиях непосредственного контакта охлаждаемого раствора с хладагентом – газообразным или жидким.

Для лучшего опреснения морского льда применяется фракционное плавление при температуре 20°С с промывкой и сепарацией кристаллов льда от маточного раствора методами фильтрования, гидравлического прессования и центрифугирования.

Данный метод применяется для концентрирования непищевых продуктов, для опреснения морской воды, концентрирования и разделения химических растворов и др. Он достаточно прост и экономичен, но требует сложного оборудования и энергоёмок. Поэтому на практике он используется чрезвычайно редко.

В нашей стране разработан газогидратный метод опреснения воды, который по аппаратурному оформлению аналогичен замораживанию со вторичным хладоагентом . Этот метод основан на способности некоторых углеводородных газов (пропан, циклопропан, бутан, изобутан, этилен, фреон-31, фреон-40 и др.) при определенных температуре и давлении образовывать при взаимодействии с водой соединения клатратного типа (газогидраты) общей формулы М nН 2 О (М - молекула гидратобразующего газа), с их последующей сепарацией от рассола и плавлением. В зависимости от природы газа и условий проведения процесса, газогидраты образуются из 46 молекул воды и 6 (газогидраты I) или 8 молекул (газогидраты II) газа.

Принципиальные основы газогидратного метода опреснения воды заключаются в следующем: в замораживаемую соленую воду вводят гидратобразующий газ и после формирования кристаллической фазы (газогидрата) ее отделяют от рассола, образовавшегося в результате отбора от исходной соленой воды части молекул Н 2 О, расходованных на образование газогидрата; кристаллы газогидрата отмывают от рассола, плавят и получают пресную воду. Выделившийся при плавлении газогидрата газ может быть рекуперирован.

Обладая всеми преимуществами контактного вымораживания, газогидратный метод выгодно отличается более высокой температурой проведения процесса, что позволяет уменьшить энергетические затраты и потери холода в окружающую среду.

Разновидностью этого метода является опреснение морской воды с помощью попутного газа из смеси бутана с пропаном. Замораживаемую морскую воду обрабатывают попутным газом; содержащие воду кристаллогидраты углеводородов образуют твёрдую кристаллическую фазу (одна молекула пропана присоединяет 17 молекул воды). Застывшую кристаллическую массу затем разделяют. Для этого достаточно снизить давление и несколько повысить температуру: углеводороды улетучиваются, остается пресная вода. После улавливания и ожижения углеводороды возвращаются в цикл.

Необходимо подчеркнуть, что при выборе метода опреснения воды следует уделять внимание наличию в морской воде дейтерия в виде тяжелой воды D 2 О. Соотношение между тяжёлой и обычной водой в природных водах составляет 1:5500. Разные природные воды содержат различное содержание дейтерия. Обычная водопроводная вода содержит около 100 г дейтерия на тонну воды, а морская вода от 130 до 150 г дейтерия на тонну воды.

Физико-химические свойства тяжёлой воды отличаются от таковых для обычной воды. Молекулярная масса D 2 O на 10% превышает массу Н 2 О. Такая разница приводит к существенным различиям в физических, химических и биологических свойствах тяжёлой воды. Тяжёлая вода кипит при 101.44 0 С, замерзает при 3,82 0 С, имеет плотность при 20 0 С 1,105 г/см 3 , причём максимум плотности приходится не на 4 0 С, как у обычной воды, а на 11,2 0 С (1,106 г/см 3). Большая прочность связи D-O, чем H-O, обусловливает различия в кинетике реакций тяжелой и обычной воды. Подвижность дейтерия D + меньше, чем подвижность протия Н + , константа ионизации тяжёлой воды в 5 раз меньше константы ионизации обычной воды. Химические реакции и биохимические процессы в D 2 O значительно замедлены. В смесях тяжёлой воды с обычной водой с большой скоростью происходит изотопный обмен: Н 2 O + D 2 O = 2 HDO.

Тяжёлая вода в высоких концентрациях токсична для организма. Для животных клеток предельная концентрация 2 H 2 O составляет 25 об.%, для клеток растений – 50 об.%, для простейших – 70-80%. Поэтому целесообразно проводить тщательный контроль изотопного состава получаемой пресной воды.

Таким образом Выбор метода и технологии опреснения воды зависит от предъявляемых к воде требований по качеству и солесодержанию, а также технико-экономических показателей. В зависимости от реализуемого способа опреснения воды применяются различные типы опреснительных установок. Дистилляционные опреснительные установки (однокорпусные и многокорпусные, по способу опреснения - парокомпрессионные и солнечные) применяются при опреснении морской воды и солёных вод с высоким солесодержанием до 35 г /л. Опреснение морской воды электродиализом и гиперфильтрацией (обратным осмосом) экономично при солесодержании 25 г /л , ионным обменом - менее 25 г /л . Из всего объёма получаемой в мире опреснённой воды 96% приходится на долю дистилляционных опреснительных установок, 2,9% - электродиализных, 1% - обратноосмотических и 0,1% - на долю замораживающих и ионообменных опреснительных установок.

Главная задача опреснения воды заключается в том, чтобы проводить процесс с минимальной затратой энергии и минимальны­ми расходами на оборудование. Это требование важно потому что страна, которая вынуждена в большей мере полагаться на опресненную воду, должна выдерживать экономическую конкуренцию с другими странами, располагающими более обширными и дешевыми источниками пресной воды.

Проектные разработки показывают, что транспортировка пресной воды из естественного источника даже на расстояние до 400-500 км дешевле опреснения только для небольших водопотребителей. Оценка прогнозных эксплуатационных запасов солоноватых и соленых подземных вод в засушливых районах с учетом удаленности большинства из них от естественных пресноводных источников позволяет сделать вывод о том, что опреснение является для них единственно возможным и экономически оправданным способом водообеспечения.

Применяемые в технике опреснения соленых вод методы могут быть эффективно использованы для возвращения природе использованной воды, не ухудшающей состояния пресных водоемов.

Литературные источники :

Мосин O.В. Физико-химические основы опреснения морской воды // Сознание и физическая реальность, 2012, № 1, с. 19-30.

Вода – мощный растворитель. При нормальной температуре (18° С) в 1 л воды можно растворить 90 г питьевой соды, 360 г поваренной соли, 600 г стиральной соды.

В воде также хорошо растворяются газы. При 0° С в 1 л воды растворяется 55 м 3 хлористого водорода.

В 1 л дождевой воды находится до 300 мг примесей. В подземных водах растворено до 22 г солей на 1 л.

Человек может пить воду с засолённостью 1-1,5г на 1 л.

Подземные воды, которые питают колодец, могут растворять соли, находящиеся в грунте и, тем самым, становиться непригодными для потребления человеком даже для технических нужд (появляется накипь на нагревательных элементах чайников, стиральных машин, бойлеров).

Чтобы колодезная вода с высоким содержанием солей стала полезной для использования в обиходе, производят опреснение воды с помощью установок и фильтров.

Опреснение воды — методы

На практике применяются следующие способы опреснения воды:

  • выпаривание (дистилляция);
  • химическое осаждение;
  • ионный обмен;
  • электроосмос;
  • опреснение вымораживанием;
  • обратный осмос.

Опреснение воды методом дистилляции

Это наиболее известный и практикуемый долгие годы метод избавления воды от солей, но это и самый энергозатратный метод. Для опреснения морской воды таким методом на Ближнем Востоке специально построили ядерный реактор.

Более практичным такой метод опреснения больших объемов воды стал после изобретения гелиовых (солнечных) опреснителей.

Метод химического осаждения

Этот метод используется очень ограниченно и только для строго определенных солей. Заключается он в том, что определенные химические элементы переводят растворенные в воде соли в нерастворимые, и они выпадают в осадок.

Ионный обмен

Метод заключается в том, что смолы с избыточным положительным или отрицательным зарядом (аниониты, катиониты) притягивают к себе и связывают соли с противоположным зарядом.

Регенерация смол позволяет применять их многократно, поэтому метод нашел промышленное применение на предприятиях пищевой и электронной промышленности.

Электроосмос

Опреснения с помощью такого метода схоже с ионным обменом, только смолы заменены мембранами под напряжением разной полярности. Метод очень продуктивный но нуждается в периодической замене мембран и затратах электроэнергии для создания потенциала на электродах.

Опреснение вымораживанием

Этот метод основан на том, что растворенные в воде соли замерзают при более низких температурах, чем чистая вода, поэтому они остаются в жидком состоянии, а лед, при замерзании воды, состоит только из молекул Н

2О (явление криоскопии). Метод очень трудоемкий и не гарантирует полной очистки. Может применяться в домашних условиях для небольших объемов воды.

Обратный осмос

Существуют способы опреснения, отличающиеся по принципу действия от вышеописанных-это опреснение методом обратного осмоса, при котором соли растворённые в воде отделяются с помощью мембраны, непроницаемой для солей, но проницаемой для воды.

Принцип действия осмоса был создан природой и является основой для обмена веществ практически всех живых организмов на планете. Осмос действует так, что живые клетки получают питательные вещества, и немаловажно – эти клетки выводят шлаки.

При очистке воды методом обратного осмоса, все вещества и вода, которые растворенные в ней разделяются на два потока, каждый из них имеет различную от другой концентрацию солей. Очищенная вода в одном потоке, и вода с большей концентрацией солей, которая уходит в дренаж.

Фильтры для опреснения воды

Обычные водопроводные фильтры с сетками и угольным наполнением нельзя применять для опреснения воды из колодца. Они с этой задачей не справятся.

Смягчить воду поможет ионный фильтр. В нем применяются ионные смолы (катиониты/аниониты), которые нужно периодически менять. Поэтому, более практичным для бытового использования является фильтр обратного осмоса.

Фильтры обратного осмоса считаются наиболее качественными, поскольку они, используя полимерную половолоконную мембрану, очищают воду до такой степени, что на выходе получается чистая молекулярная вода. В ней не будет иметься абсолютно никаких солей и зловредной органики.

Пить долгое время такую воду нецелесообразно, поскольку для организма человека критически важны как соли, так и минералы.

Поэтому часто данные виды фильтров оснащаются встроенными минерализаторами. Вышеуказанные фильтры стоят больших денег и требуют отдельной инсталляции.

Установки для опреснения воды

Для опреснения воды в промышленных масштабах применяются проточные установки с регенерируемыми смолами (ионные установки) – это наиболее удобный в обслуживании и экономически выгодный вариант. Современная торговля предлагает малогабаритные варианты таких установок для автономного обеспечения водой коттеджных поселков и индивидуального жилья.

Промышленные дистилляторы часто применяются в производственном процессе. Их простота и коррозионностойкие материалы, из которых такие дистилляторы изготовлены, являются существенным аргументом для многих пользователей такого опреснения воды. Такие опреснительные установки применяются в химическом производстве и в пищевой промышленности.

Особенно эффективными оказались выпарители, использующие солнечную энергию, но их пока применяется мало. Требуются большие капитальные затраты и много солнца. Для побережья морей в тропиках – это очень выгодный вариант, но не для коттеджного поселка в средней полосе, возле реки и прохладного леса — эти установки не подходят.

Сравнение эффективности методов и фильтров

По эффективности методов опреснения воды их следует разделить на промышленные и бытовые. Большие объемы воды и очень жесткую воду (например, морскую) эффективнее всего опреснять методом дистилляции или методом ионного обмена, а в быту более эффективным будет метод обратного осмоса.

Так как колодезная вода используется в коллективных и индивидуальных системах автономного водообеспечения, то для ее опреснения необходимо применять методы ионного обмена или обратного осмоса. Примерами такого оборудования для коллективного пользования являются:

  • Ecosoft FU-1035-Cab-CG;
  • Organic U-1035 Econom;
  • Ecosoft FU-835 Cab-CG;
  • Organic Big Blue 20;
  • Filter cab-1035-U CI;
  • Atlas LCS15;
  • BWT AQUADIAL Softlife 15.

Для индивидуального использования подойдут следующие фильтры:

  • фильтр СВОД АС 10/250;
  • СВОД АС 5/100;
  • фильтр СВОД АС 5/300.

Но лучше всего в индивидуальном использовании для опреснения колодезной воды подходят фильтры обратного осмоса. Например:

  • AURO-505P-JG (100G);
  • 400G (на раме) AURO-4005-Rama;
  • AURO-4005-FLOW;
  • Atoll A560 Em Premium (с минерализатором).

В торговых сетях предложение фильтров для опреснения колодезной воды очень большое, поэтому свой выбор необходимо делать, основываясь на потребностях и возможностях. Оптимальным вариантом будет консультация со специалистами и отзывы других потребителей.