Способ очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок и ультразвука. Углеродные нанотрубки и нановолкна Очистка углеродных нанотрубок

Очистка углеродных нанотрубок

Ни один из распространенных способов получения УНТ не позволяет выделить их в чистом виде. Примесями к НТ могут быть фуллерены, аморфный углерод, графитизированные частицы, частицы катализатора.

Применяют три группы методов очистки УНТ:

разрушающие,

неразрушающие,

комбинированные.

Разрушающие методы используют химические реакции, которые могут быть окислительными или восстановительными и основаны на различиях в реакционной способности различных углеродных форм. Для окисления используют либо растворы окислителей, либо газообразные реагенты, для восстановления - водород. Методы позволяют выделять УНТ высокой чистоты, но связаны с потерями трубок.

Неразрушающие методы включают экстрагирование, флокуляцию и селективное осаждение, микрофильтрацию с перекрестным током, вытеснительную хроматографию, электрофорез, селективное взаимодействие с органическими полимерами. Как правило, эти методы малопроизводительны и неэффективны.

Свойства углеродных нанотрубок

Механические. Нанотрубки, как было сказано, являются на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки не "рвутся", а перестраиваются. Основываясь на таком свойстве нанотрубок как высокая прочность, можно утверждать, что они являются наилучшим материалом для троса космического лифта на данный момент. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали. Приведённый ниже график показывает сравнение однослойной нанотрубки и высокопрочной стали.

1 - Трос космического лифта по подсчётам должен выдерживать механическое напряжение 62,5 ГПа

2 - Диаграмма растяжения (зависимость механического напряжения у от относительного удлинения е)

Чтобы продемонстрировать существенное различие между самыми прочными на текущий момент материалами и углеродными нанотрубками, проведём следующий мысленный эксперимент. Представим, что, как это предполагалось ранее, тросом для космического лифта будет служить некая клиновидная однородная структура, состоящая из самых прочных на сегодняшний день материалов, то диаметр троса у GEO (geostationary Earth orbit) будет около 2 км и сузится до 1 мм у поверхности Земли. В этом случае общая масса составит 60*1010 тонн. Если бы в качестве материала использовались углеродные нанотрубки, то диаметр троса у GEO составил 0,26 мм и 0,15 мм у поверхности Земли, в связи с чем общая масса была 9,2 тонн. Как видно из вышеуказанных фактов, углеродное нановолокно - это как раз тот материал, который необходим при постройке троса, реальный диаметр которого составит около 0,75 м, чтобы выдержать также электромагнитную систему, использующуюся для движения кабины космического лифта.

Электрические. Вследствие малых размеров углеродных нанотрубок только в 1996 году удалось непосредственно измерить их удельное электрическое сопротивление четырёхконтактным способом.

На полированную поверхность оксида кремния в вакууме наносили золотые полоски. В промежуток между ними напыляли нанотрубки длиной 2-3 мкм. Затем на одну из выбранных для измерения нанотрубок наносили 4 вольфрамовых проводника толщиной 80 нм. Каждый из вольфрамовых проводников имел контакт с одной из золотых полосок. Расстояние между контактами на нанотрубке составляло от 0,3 до 1 мкм. Результаты прямого измерения показали, что удельное сопротивление нанотрубок может изменяться в значительных пределах - от 5,1*10 -6 до 0,8 Ом/см. Минимальное удельное сопротивление на порядок ниже, чем у графита. Большая часть нанотрубок обладает металлической проводимостью, а меньшая проявляет свойства полупроводника с шириной запрещённой зоны от 0,1 до 0,3 эВ.

Французскими и российскими исследователями (из ИПТМ РАН, Черноголовка) было открыто ещё одно свойство нанотрубок, как сверхпроводимость. Они проводили измерения вольт-амперных характеристик отдельной однослойной нанотрубки диаметром ~1нм, свернутого в жгут большого числа однослойных нанотрубок, а также индивидуальных многослойных нанотрубок. Сверхпроводящий ток при температуре, близкой к 4К, наблюдался между двумя сверхпроводящими металлическими контактами. Особенности переноса заряда в нанотрубке существенно отличаются от тех, которые присущи обычным, трехмерным проводникам и, по-видимому, объясняются одномерным характером переноса.

Также де Гиром из Университета Лозанны (Швейцария) было обнаружено интересное свойство: резкое (около двух порядков величины) изменение проводимости при небольшом, на 5-10о, изгибе однослойной нанотрубки. Это свойство может расширить область применения нанотрубок. С одной стороны, нанотрубка оказывается готовым высокочувствительным преобразователем механических колебаний в электрический сигнал и обратно (фактически это - телефонная трубка длиной в несколько микрон и диаметром около нанометра), а, с другой стороны, это - практически готовый датчик мельчайших деформаций. Такой датчик мог бы найти применение в устройствах, контролирующих состояние механических узлов и деталей, от которых зависит безопасность людей, например, пассажиров поездов и самолетов, персонала атомных и тепловых электростанций и т. п.

Капиллярные. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами. Чтобы открыть нанотрубку, надо удалить верхнюю часть - крышечку. Один из способов удаления заключается в отжиге нанотрубок при температуре 850 0 C в течение нескольких часов в потоке углекислого газа. В результате окисления около 10% всех нанотрубок оказываются открытыми. Другой способ разрушения закрытых концов нанотрубок - выдержка в концентрированной азотной кислоте в течение 4,5 часов при температуре 2400 C. В результате такой обработки 80% нанотрубок становятся открытыми.

Первые исследования капиллярных явлений показали, что жидкость проникает внутрь канала нанотрубки, если её поверхностное натяжение не выше 200 мН/м. Поэтому для ввода каких-либо веществ внутрь нанотрубок используют растворители, имеющие низкое поверхностное натяжение. Так, например, для ввода в канал нанотрубки некоторых металлов используют концентрированную азотную кислоту, поверхностное натяжение которой невелико (43 мН/м). Затем проводят отжиг при 4000 C в течение 4 часов в атмосфере водорода, что приводит к восстановлению металла. Таким образом были получены нанотрубки, содержащие никель, кобальт и железо.

Наряду с металлами углеродные нанотрубки могут заполняться газообразными веществами, например водородом в молекулярном виде. Эта способность имеет практическое значение, ибо открывает возможность безопасного хранения водорода, который можно использовать в качестве экологически чистого топлива в двигателях внутреннего сгорания. Также ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния (см. Рис.5).

Рис. 5. Внутри C60 внутри однослойной нанотрубки

Углеродные нанотрубки - завтрашний день инновационных технологий. Производство и внедрение нанотубуленов позволит улучшить качества товаров и изделий, значительно снизив их вес и увеличив прочность, а также наделив новыми характеристиками.

Углеродные нанотрубки или тубулярная наноструктура (нанотубулен) - это искусственно созданные в лабораторных условиях одно или многостенные полые цилиндрические структуры, получаемые из атомов углерода и обладающие исключительными механическими, электрофизическими и физическими свойствами.

Углеродные нанотрубки получаются из атомов углерода и имеют форму трубок или цилиндров. Они очень маленькие (на наноуровне), с диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров. Углеродные нанотрубки состоят из графита, но обладают другими, не свойственными графиту характеристиками. Они не существуют в природе. Их происхождение имеет искусственную основу. Тело нанотрубок синтетическое, создаваемое людьми самостоятельно от начала до конца.

Если посмотреть на увеличенную в миллион раз нанотрубку, то можно увидеть вытянутый цилиндр, состоящий из равносторонних шестиугольников с атомами углерода на своих вершинах. Это свёрнутая в трубку графитовая плоскость. От хиральности нанотрубки зависят её физические характеристики и свойства.

Увеличенная в милион раз нанотрубка представляет собой вытянутый цилиндр, состоящий из равносторонних шестиугольников с атомами углерода на своих вершинах. Это свёрнутая в трубку графитовая плоскость

Хиральность (англ. chirality) - свойство молекулы не совмещаться в пространстве со своим зеркальным отражением.

Если попонятнее, то хиральность - это когда сворачиваешь, например, лист бумаги ровно. Если наискось, то это уже ахиральность. Нанотубулены могут иметь однослойную и многослойную структуры. Многослойная структура - это ничто иное, как несколько однослойных нанотрубок, «одетых» одна на одну.

История открытия

Точная дата открытия нанотрубок и их первооткрыватель неизвестны. Эта тема является пищей для споров и рассуждений, так как существует множество параллельных описаний этих структур учёными из разных стран. Основная сложность в идентификации первооткрывателя заключается в том, что нанотрубки и нановолокна, попадая в поле зрения учёных, длительное время не привлекали их пристального внимания и тщательно не исследовались. Существующие научные работы доказывают, что возможность создания нанотрубок и волокон из углеродсодержащих материалов теоретически допускалась ещё во второй половине прошлого столетия.

Основная причина, по которой длительное время не проводились серьёзные исследования микронных углеродных соединений, заключается в том, что на тот момент учёные не обладали достаточно мощной научной базой для исследований, а именно не было оборудования, способного в нужной степени увеличивать объект изучения и просвечивать их структуру.

Если расположить события по исследованию наноуглеродистых соединений в хронологическом порядке, то первое свидетельство приходится на 1952 год, когда советскими учёными Радушкевичем и Лукьяновичем было обращено внимание на нановолокнистую структуру, образованную при разложении термическим способом оксида углерода (русское название - окись). Наблюдаемая с помощью электронно-микроскопического оборудования структура имела волокна диаметром около 100 нм. К сожалению, дальше фиксации необычной наноструктуры дело не пошло и дальнейших исследований не последовало.

После 25 лет забвения начиная с 1974 года информация о существовании микронных трубчатых структур из углерода начинает попадать в газеты. Так, группой японских учёных (Т. Койяма, М. Эндо, А. Оберлин) во время исследований в 1974–1975 гг. были представлены широкой публике результаты ряда своих исследований, в которых содержалось описание тонких трубок с диаметром менее 100 Å, которые были получены из паров при конденсации. Также образование пустотелых структур с описанием строения и механизма образования, полученных при исследовании свойств углерода, описаны советскими учёными института катализа СО АН СССР в 1977 году.

Å (Агстрём) - единица измерения расстояний, равная 10−10 м. В системе СИ единицей, близкой по величине к ангстрему, является нанометр (1 нм = 10 Å).

Фуллерены - полые, сферообразные молекулы в форме шара или мяча для регби.


Фуллерены - четвёртая, ранее неизвестная, модификация углерода, открытая английским химиком и астрофизиком Харолдом Крото

И только после использования в своих научных исследованиях новейшего оборудования, позволяющего детально рассматривать и просвечивать углеродную структуру нанотрубок, японским учёным Сумио Иджимой (Sumio Iijima) в 1991 году были проведены первые серьёзные исследования, в результате которых удалось получить опытным путём углеродные нанотрубки и детально их исследовать.

В своих исследованиях профессор Иджима для получения опытного образца воздействовал на распылённый графит электродуговым разрядом. Прототип был тщательно замерен. Его размеры показали, что диаметр нитей (каркаса) не превышает нескольких нанометров, при длине от одного до нескольких микрон. Изучая структуру углеродной нанотрубки, учёным было установлено, что изучаемый объект может иметь от одной до нескольких слоёв, состоящих из графитовой гексагональной сетки на основе шестиугольников. При этом концы нанотрубок структурно напоминают рассечённую надвое половинку молекулы фуллерена.

На момент проведения вышеуказанных исследований уже существовали работы таких известных в своей области учёных, как Джонса, Л.А. Чернозатонского, М.Ю. Корнилова, предсказывающих возможность образования данной аллотропной формы углерода, описывающих её строение, физические, химические и прочие свойства.


Многослойная структура нанотрубки это ничто иное, как несколько однослойных нанотубуленов, «одетых» одна на одну по принципу русской матрёшки

Электрофизические свойства

Электрофизические свойства углеродных нанотрубок находятся в стадии самого пристального изучения учёными сообществами всего мира. Проектируя нанотрубки в определённых геометрических соотношениях, можно придать им проводниковые или полупроводниковые свойства. Например, алмаз и графит являются углеродом, но вследствие различия в молекулярной структуре обладают различными, а в некоторых случаях противоположными свойствами. Такие нанотрубки называют металлическими или полупроводниковыми.

Нанотрубки, которые проводят электрический ток даже при абсолютном нуле температур, являются металлическими. Нулевая проводимость электрического тока при абсолютном нуле, которая возрастает с повышением температуры, указывает на признак полупроводниковой наноструктуры.

Основная классификация распределяется по способу сворачивания графитовой плоскости. Способ сворачивания обозначается двумя числами: «m» и «n», которые задают направление сворачивания по векторам графитовой решётки. От геометрии сворачивания графитовой плоскости зависят свойства нанотрубки, например, угол скручивания непосредственно влияет на их электрофизические свойства.

В зависимости от параметров (n, m) нанотрубки бывают: прямые (ахиральные), зубчатые («кресло»), зигзагообразные и спиральные (хиральные). Для расчёта и планирования электропроводности используют формулу соотношений параметров: (n-m)/3.

Целое число, получаемое при расчёте, свидетельствует о проводимости нанотрубки металлического типа, а дробное - полупроводниковой. Например, металлическими являются все трубки типа «кресло». Углеродные нанотрубки металлического типа проводят электрический ток при абсолютном нуле. Нанотубулены полупроводникового типа обладают нулевой проводимостью при абсолютном нуле, которая возрастает с повышением температуры.

Нанотрубки с металлическим типом проводимости ориентировочно могут пропускать миллиард ампер на квадратный сантиметр. Медь, являясь одним из лучших металлических проводников, уступает нанотрубкам по этим показателям более чем в тысячу раз. При превышении предела проводимости происходит нагрев, который сопровождается плавлением материала и разрушением молекулярной решётки. С нанотубуленами при равных условиях этого не происходит. Это объясняется их очень высокой теплопроводностью, которая превышает показатели алмаза в два раза.

По показателям прочности нанотубулен также оставляет другие материалы далеко позади. Он прочнее самых прочных сплавов стали в 5–10 раз (1,28–1,8 ТПа по модулю Юнга) и обладает упругостью в 100 тысяч раз выше чем каучук. Если сравнить показатели предела прочности, то они превышают аналогичные прочностные характеристики качественной стали в 20–22 раза!

Как получают УН

Нанотрубки получают высокотемпературным и низкотемпературным способами.

К высокотемпературным можно отнести способы лазерной абляции, солярной технологии или электродугового разряда. Низкотемпературный способ вобрал в себя химическое осаждение из паровой фазы с использованием каталитического разложения углеводородов, газофазное каталитическое выращивание из монооксида углерода, производство путём электролиза, термообработка полимера, местный низкотемпературный пиролиз или местный катализ. Все способы сложны для понимания, высокотехнологичны и очень затратны. Производство нанотрубок может себе позволить только крупное предприятие с мощной научной базой.

Упрощённо, процесс получения нанотрубок из углерода дуговым способом выглядит следующим образом:

В нагретый до определённой температуры с замкнутым контуром реактор через инъекционный аппарат вводится плазма в газообразном состоянии. В реакторе, в верхней и нижней части, устанавливаются магнитные катушки, одна из которых является анодом, а другая катодом. На магнитные катушки подаётся постоянный электрический ток. На находящуюся в реакторе плазму воздействуют электрической дугой, которую вращают и магнитным полем. Под действием высокотемпературной электроплазменной дуги с поверхности анода, который состоит из углеродсодержащего материала (графита), испаряется или «выщёлкивается» углерод и конденсируется на катоде в виде углеродистых нанотрубок, содержащихся в осадке. Для того чтобы атомы углерода имели возможность конденсироваться на катоде, температуру в реакторе снижают. Даже краткое описание этой технологии позволяет оценить всю сложность и затратность получения нанотубуленов. Пройдёт ещё немало времени, прежде чем процесс производства и применения станет доступным для большинства предприятий.

Фотогалерея: Схема и оборудование для получения нанотрубок из углерода

Установка по синтезу одностенных углеродных нанотрубок электродуговым способом Научная установка небольшой мощности для получения тубулярной наноструктуры
Низкотемпературный способ получения

Установка для получения длинных углеродных нанотрубок

Токсичны ли?

Однозначно, да.

В процессе лабораторных исследований учёные пришли к выводу, что углеродные нанотрубки негативно влияют на живые организмы. Это, в свою очередь, подтверждает токсичность нанотрубок, и все реже приходится учёным сомневаться в этом немаловажном вопросе.

Как показали исследования, прямое взаимодействие углеродных нанотрубок с живыми клетками приводит к их гибели. Особенно однослойные нанотрубки обладают сильной противомикробной активностью. Опыты учёные начали проводить на распространённой культуре царства бактерий (кишечная палочка) Е-Соli. В процессе исследований были применены однослойные нанотрубки диаметром от 0,75 до 1,2 нанометров. Как показали проведённые опыты, в результате воздействия углеродных нанотрубок на живую клетку происходит повреждение механическим способом клеточных стенок (мембран).

Нанотрубки, получаемые другими способами, содержат в себе большое количество металлов и других токсичных примесей. Многие учёные предполагают, что сама токсичность углеродных нанотрубок не зависит от их морфологии, а связана напрямую с примесями, содержащимися в них (нанотрубках). Однако проведённые работы учёных из Йеля в области исследования нанотрубок показали ошибочное представление многих сообществ. Так, бактерии кишечной палочки (Е-Соli) в процессе исследований подвергались обработке однослойными углеродными нанотрубками в течение одного часа. В результате большая часть Е-Соli погибла. Данные исследования в области наноматериалов подтвердили их токсичность и негативное воздействие на живые организмы.

Учёные пришли к выводу, что наиболее опасными являются однослойные нанотрубки, это связано с пропорциональным отношением длины углеродной нанотрубки к её диаметру.

Различные исследования в части влияния углеродных нанотрубок на организм человека привели учёных к выводу о тождественном воздействии, как и в случае попадания асбестовых волокон в организм. Степень негативного воздействия асбестовых волокон напрямую зависит от их размера: чем меньше, тем отрицательное воздействие сильнее. А в случае углеродных нанотрубок и сомневаться не приходится в их отрицательном влиянии на организм. Попадая в организм вместе с воздухом, нанотрубка через плевру оседает в грудной клетке, тем самым вызывая тяжёлые осложнения, в частности, раковые опухоли. Если проникновение в организм нанотубуленов происходит через пищу, то они оседают на стенках желудка и кишечника, вызывая различные заболевания и осложнения.

В настоящее время учёными проводятся исследования по вопросу биологической совместимости наноматериалов и поиску новых технологий безопасного производства углеродных нанотрубок.

Перспективы

Углеродные нанотрубки занимают широкую сферу применения. Это связано с тем, что они имеют молекулярную структуру в виде каркаса, позволяющую тем самым иметь свойства, отличающиеся от алмаза или графита. Именно благодаря своим отличительным чертам (прочность, проводимость, изгиб) углеродные нанотрубки применяются чаще, в сравнении с другими материалами.

Применяется это углеродное изобретение в электронике, оптике, в машиностроении и т. д. Углеродные нанотрубки используют как добавки к различным полимерам и композитам для усиления прочности молекулярных соединений. Ведь всем известно, что молекулярная решётка углеродных соединений обладает невероятной прочностью, тем более в чистом виде.

Углеродные нанотрубки используются также в производстве конденсаторов и различного рода датчиков, анодов, которые необходимы для изготовления батареек, в роли поглотителя электромагнитных волн. Широкое применение это углеродное соединение нашло в сфере изготовления телекоммуникационных сетей и жидкокристаллических дисплеев. Также нанотрубки используются в качестве усилителя каталитических свойств в производстве осветительных устройств.

Коммерческое применение

Рынок Применение Свойства составов на основе углеродных нанотрубок
Автомобили Детали топливной системы и топливопроводы (соединители, детали насоса, уплотнительные кольца, трубки), внешние кузовные детали для электроокраски (бамперы, корпуса зеркал, крышки топливных баков) Улучшенный баланс свойств по сравнению с техническим углеродом, способность к переработке для крупных частей, устойчивость к деформации
Электроника Технологические инструменты и оборудование, кассеты для полупроводниковых пластин, конвейерные ленты, объединительные блоки, оборудование для чистых комнат Повышенная чистота смесей по сравнению с углеродными волокнами, контроль удельного сопротивления поверхности, способность к обработке для отливки тонких частей, устойчивость к деформации, сбалансированность свойств, альтернативные возможности пластмассовых смесей по сравнению с углеродными волоконами

Углеродные нанотрубки не ограничены определёнными рамками по применению в различных отраслях промышленности. Материал изобретён относительно недавно, и, в связи с этим, в настоящее время широко применяется в научных разработках и исследованиях многих стран мира. Это необходимо для более детального изучения свойств и характеристик углеродных нанотрубок, а также налаживания масштабного производства материала, так как в настоящее время он занимает довольно слабые позиции на рынке.


Для охлаждения микропроцессоров применяют углеродные нанотрубки

Благодаря хорошим проводящим свойствам использование углеродных нанотрубок в машиностроении занимает широкий спектр. Этот материал используют в качестве устройств по охлаждению агрегатов, имеющих массивные размеры. В первую очередь это связано с тем, что углеродные нанотрубки имеют высокий удельный коэффициент теплопроводности.

Применение нанотрубок в разработках компьютерных технологий занимает важную роль в электронной промышленности. Благодаря применению этого материала налажено производство по изготовлению довольно плоских дисплеев. Это способствует выпуску компьютерной техники компактных размеров, но при этом не теряются, а даже увеличиваются технические характеристики электронно-вычислительных машин. Применение углеродных нанотрубок в разработках компьютерных технологий и электронной отрасли позволит достичь производства оборудования, которое в разы будет превосходить по техническим характеристикам нынешние аналоги. На основе данных исследований уже сейчас создаются высоковольтные кинескопы.


Первый процессор из углеродных нанотрубок

Проблемы использования

Одна из проблем применения нанотрубок заключается в негативном влиянии на живые организмы, что ставит под сомнение использование этого материала в медицине. Некоторые из экспертов предполагают, что в процессе массового производства углеродных нанотрубок могут возникнуть неоценённые риски. То есть в результате расширения областей применения нанотрубок возникнет потребность в их производстве в широких масштабах и, соответственно, возникнет угроза окружающей среде.

Учёные предлагают искать пути решения этой проблемы в применении более экологически чистых методов и способов производства углеродных нанотрубок. Также было предложено производителям этого материала серьёзно подойти к вопросу «очистки» последствия СVD-техпроцесса, что, в свою очередь, может сказаться на увеличении стоимости выпускаемой продукции.

Фото негативного воздействия нанотрубок на на клетки а) клетки кишечной палочки до воздействия нанотрубок; b) клетки после воздействия нанотрубок

В современном мире углеродные нанотрубки вносят весомый вклад в области развития инновационных технологий. Специалисты дают прогнозы по увеличению в ближайшие годы производства нанотрубок и к снижению цен на данную продукцию. Это, в свою очередь, расширит сферы применения нанотрубок и увеличит потребительский спрос на рынке.

Изобретение относится к области сорбционной очистки поверхностных и подземных вод с высоким содержанием титана и его соединений и может быть использовано для очистки воды с получением безопасной для здоровья питьевой воды. Способ очистки поверхностных и подземных вод от титана и его соединений включает приведение загрязненных вод в контакт с адсорбентом, где в качестве адсорбента используют углеродные нанотрубки, которые помещают в ультразвуковую ванну и воздействуют на углеродные нанотрубки и очищаемую воду в режиме 1-15 мин, с частотой ультразвука 42 кГц и мощностью 50 Вт. Технический результат заключается в 100%-ной очистке воды от титана и его соединений за счет очень высоких адсорбционных показателей углеродных нанотрубок. 4 ил., 2 табл., 4 пр.

Рисунки к патенту РФ 2575029



Изобретение относится к области сорбционной очистки поверхностных и подземных вод с высоким содержанием титана и его соединений и может быть использовано для очистки вод от титана и его соединений для получения безопасной для здоровья питьевой воды.

Известен способ очистки воды от ионов тяжелых металлов, согласно которому для очистки используют в качестве адсорбента прокаленный активированный природный адсорбент, представляющий собой кремнистую породу смешанного минерального состава месторождений Татарстана, содержащую мас.%: опалкристоболит 51-70, цеолит 9-25, глинистую составляющую - монт мориллонит, гидрослюда 7-15, кальцит 10-25, и т.д. [Патент РФ 2150997, МПК B01G 20/16, B01G 20/26, опубл. 20.06.2000]. Недостатком известного способа является использование для активации материала хлористоводородной кислоты, что требует оборудования, обладающего устойчивостью к агрессивным средам. Кроме того, в способе используется довольно редко встречающаяся порода сложного минерального состава и нет данных о содержании титана и его соединений.

Известен способ получения гранулированного адсорбента на основе шунгита [Авт.св. СССР № 822881, МПК B01G 20/16, опубл. 23.04.1981].

Недостатком данного способа является использование малораспространенного минерала шунгита, который предварительно модифицирован нитратом аммония, прокаливанием при высокой температуре, что требует соответствующей аппаратуры и расхода энергии, а также обработки в агрессивных средах. Об эффективности очистки воды от титана нет данных.

Известен способ, взятый за аналог, получения органоминеральных сорбентов на основе природных алюмосиликатов, а именно цеолита, путем модифицирования предварительно термообработанного алюмосиликата полисахаридами, в частности хитозаном [Патент РФ № 2184607, МПК C02F 1/56, B01J 20/32, B01J 20/26, B01J 20/12, опубл. 10.07.2002]. Способ позволяет получать сорбенты, пригодные для эффективной очистки водных растворов от ионов металла и органических красителей различной природы.

Недостатками сорбентов, полученных описанным способом, являются их высокая степень дисперсности, что не позволяет осуществлять очистку воды током через слой сорбента (фильтр быстро забивается), а также возможность смыва со временем слоя хитозана с сорбента из-за отсутствия закрепления его на минеральной основе и нет данных об эффективной очистки от соединений тяжелых металлов, как например титан и его соединений.

Описан способ осветления и утилизации промышленных вод фильтровальных сооружений станций водоподготовки [Патент на изобретение RU № 2372297, МПК C02F 1/5, C02F 103/04, опубл. 10.11.2009].

Сущность изобретения заключается в использовании комплексного коагулянта, представляющего собой смесь водных растворов сульфата и оксихлорида алюминия в соотношении доз 2:1 по окиси алюминия.

В данном патенте приведены примеры очистки подземной воды для питьевого водоснабжения.

Недостатком описанного способа является слабая эффективность очистки от примесей, 46% осадка всплыла, а остальная часть находилась во взвешенном состоянии.

Известен способ очистки воды обработкой в подающем трубопроводе с катионным флокулянтом [Патент РФ № 2125540, МПК C02F 1/00, опубл. 27.01.1999].

Изобретение относится с способам очистки воды поверхностных водосточников и может быть использовано в области хозяйственно-питьевого или технического водоснабжения.

Сущность изобретения: дополнительно к флокулянту в трубопровод вводят минеральный коагулянт в массовом соотношении к флокулянту от 40:1 до 1:1.

Способ обеспечивает повышение эффективности агрегатирования взвешенных веществ, что позволяет снизить мутность отстоянной воды в 2-3 раза. После использования этого способа необходимо дальнейшее полное осаждение в отстойниках. Таким образом, согласно описанному способу не достигнута 100% очистка от металлов, жесткость воды снизилась с 5,7 мг-экв/л до 3 мг-экв/л, мутность снизилась до 8,0 мг/л.

Недостатком аналога является слабая эффективность очистки от металлов и органических примесей, о содержании титана нет данных.

Описана сорбционная эффективность углеродных нанотрубок (УНТ), как основа инновационной технологии очистки водно-этанольных смесей [Запороцкова Н.П. и др. Вестник ВолГУ, серия 10, вып. 5, 2011, 106 с.].

В работе выполнены квантово-механические исследования процессов адсорбции молекул тяжелых спиртов на внешней поверхности однослойных углеродных нанотрубок.

Недостатком описанной сорбционной активности УНТ является только теоретические квантово-механические расчеты, а экспериментальные исследования проведены для спиртов. Примеры для очистки от металлов отсутствуют.

Доказано положительное влияние углеродных нанотрубок на процесс очистки водно-этанольных смесей.

В настоящее время особые надежды в развитии многих областей науки и техники связывают с углеродными нанотрубками УНТ [Харрис П. Углеродные нанотрубки и родственные структуры. Новые материалы XXI века. - М.: Техносфера, 2003. - 336 с.].

Замечательная особенность УНТ связана с их уникальными сорбционными характеристиками [Елецкий А.В. Сорбционные свойства углеродных наноструктур. - Успехи физических наук. - 2004. -Т. 174, № 11. - С. 1191-1231].

Описан фильтр на основе углеродных нанотрубок для очистки спиртосодержащих жидкостей [Поликарпова Н.П. и др. Вестник ВолГУ, серия 10, вып. 6, 2012, 75 с.]. Проведены эксперименты по очистке спиртосодержащих жидкостей методами фильтрации и пропускания, установлена массовая доля УНТ, приводящая к наилучшему результату.

Выполненные экспериментальные исследования доказали, что обработка водно-этанольной смеси УНТ способствует уменьшению содержания сивушных масел и других веществ. Недостатком данного аналога является отсутствие данных по очистке воды от металлов.

В работе изучалась сорбция/десорбция Zn(II) в последовательных циклах активированным углем и УНТ. Адсорбция Zn(II) активированным углем резко снижалась после нескольких циклов, что объясняется низким удалением ионов металлов с внутренней поверхности пор активированного угля.

Гидрофобная природа УНТ обуславливает их слабое взаимодействие с молекулами воды, создавая условия для ее свободного протекания.

Noy A., Park Н.G., Fornasiero F., Holt J.K., Grigoropoulos С.P. and Bakajin О. Nanofluidics in carbon nanotubes // Nano Today. 2007, vol. 2, no. 6, pp. 22-29.

Адсорбционная емкость УНТ зависит от наличия функциональных групп на поверхности адсорбента и свойств адсорбата.

Так, например, наличие карбоксильных, лактонных и фенольных групп повышает адсорбционную емкость по полярным веществам .

УНТ, на поверхности которых отсутствуют функциональные группы, характеризуются высокой адсорбционной емкостью по неполярным загрязняющим веществам.

Один из способов создания мембраны - это выращивание УНТ на кремневой поверхности при помощи углеродсодержащих паров с использованием никеля в качестве катализатора.

УНТ - молекулярные структуры, напоминающие соломинки, из листов углерода толщиной в долю нанометра 10 -9 м, по сути это скрученный в трубку атомарный слой обычного графита - одного из наиболее перспективных материалов в области нанотехнологий. УНТ могут иметь и развернутую структуру [Сайт WCG http://www.worldcommunitygrid.org/].

Мембранная технология, которая широко используется для получения питьевой воды для жителей нашей планеты.

Имеется два существенных недостатка - энергопотребление и обрастание мембран, что удаляется только химическими способами.

Производительные и необрастающие мембраны могут быть созданы на основе углеродных нанотрубок или графена [М. Majumder et al. Nature 438, 44 (2005)].

Наиболее близким к заявленному изобретению по технической сущности и достигаемому результату является способ получения сорбентов для очистки воды [Патент РФ 2277013 С1, МПК B01J 20/16, B01J 20/26, B01J 20/32, опубл. 01.12.2004]. Этот патент взят за прототип. Этот способ относится к области сорбционной очистки воды, конкретно к получению сорбентов и способам очистки, и может быть использовано для очистки питьевой или промышленной воды с высоким содержанием ионов тяжелых металлов и полярных органических веществ. Способ включает обработку природного алюмосиликата раствором хитозана в разбавленной уксусной кислоте в соотношении алюмосиликата к раствору хитозана, равном 1:1, при рН 8-9.

В табл. 1 приведена сравнительная характеристика сорбентов, полученных согласно изобретению, взятому за прототип [Патент 2277013]. Приведены примеры по сорбции в отношении красителей и по сорбции ионов меди, железа и других металлов из растворов.

Недостатком прототипа является невысокая адсорбционная способность по отношению к тяжелым металлам (СОЕ) мг/л для меди Cu +2 (от 3,4 до 5,85), отсутствуют данные по адсорбции титана и его соединений. СОЕ, мг/л для Fe +3 меняется от 3,4 до 6,9.

Задачей изобретения является разработка способа очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок и воздействием ультразвука, что позволит получить качественную питьевую чистейшую воду, повысит эффективность очистки поверхностных и подземных вод за счет высоких адсорбционных показателей УНТ.

Поставленная задача решается предлагаемым способом очистки поверхностных и подземных вод от титана и его соединений с помощью УНТ, воздействуя ультразвуком мощностью 50 Вт с частотой ультразвука в 42 кГц в течение 1-15 мин.

Способ осуществляется следующим образом. Адсорбент представляет собой однослойные углеродные нанотрубки, обладающие способностью вступать в активное взаимодействие с атомами титана и его катионами (Ti, Ti +2 , Ti +4).

Один грамм УНТ 98% чистоты вносят в 99 г воды для очистки от Ti, Ti +2 , Ti +4 , а затем все содержимое помещают в ультразвуковую ванну УХ-3560 и воздействуют ультразвуком в течение 1-15 мин мощностью 50 Ватт и с частотой ультразвука 42 кГц.

После фильтрования исследуют образцы воды, взятые для анализа. Атомно-эмиссионный анализ применяется для определения содержания титана и его соединений в пробах воды до обработки УНТ и после обработки проб воды УНТ в ультразвуковой ванне.

Предлагаемый «Способ очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок и ультразвука» подтверждается примерами, которые будут описаны далее.

Осуществление способа в соответствии с указанными условиями позволяет получать абсолютно чистую воду с нулевым содержанием титана и его соединений (Ti, Ti +2 , Ti +4).

Технический результат достигается тем, что УНТ работает как капилляр, всасывая в себя атомы Ti и катионы титана Ti +2 и Ti +4 , размеры которых сравнимы с внутренним диаметром УНТ. Диаметр УНТ варьирует от 4,8 Å от 19,6 Å в зависимости от условий получения УНТ.

Экспериментально доказано, что полости УНТ активно заполняются различными химическими элементами.

Важной особенностью, отличающей УНТ от других известных материалов, является наличие в нанотрубке внутренней полости. Атом Ti и его катионы Ti +2 , Ti +4 проникают внутрь УНТ под действием внешнего давления либо в результате капиллярного эффекта и удерживается там благодаря сорбционным силам [Дьячков П.Н. Углеродные нанотрубки: структура, свойства, применение. - М.: Бином. Лаборатория знаний, 2006. - 293 с.].

Это обеспечивает возможность селективной адсорбции нанотрубками. Кроме того, сильно искривленная поверхность УНТ позволяет адсорбировать на ее поверхности достаточно сложные атомы и молекулы, в частности Ti, Ti +2 , Ti +4 .

При этом эффективность нанотрубок в десятки раз превосходит активность графитовых адсорбентов, являющихся на сегодняшний день самыми распространенными средствами очистки. УНТ могут адсорбировать примеси как на внешней поверхности, так и на внутренней, что позволяет проводить селективную адсорбцию.

Поэтому УНТ можно использовать для финишной очистки различных жидкостей от примесей сверхмалых концентраций.

У УНТ привлекательна высокая удельная поверхность материала УНТ, достигающая значений 600 м 2 /г и более.

Столь высокая удельная поверхность, в несколько раз превышает удельную поверхность лучших современных сорбентов, открывает возможность их использования для очистки поверхностных и подземных вод от тяжелых металлов, в частности Ti, Ti +2 , Ti +4 .

Синтез УНТ. С использованием установки синтеза углеродных нанотрубок CVDomna получен углеродный наноматериал УНТ, который применялся для очистки поверхностных и подземных вод от титана и его соединений.

Проведены экспериментальные исследования по очистке воды от титана и его соединений.

Для определения оптимального количества УНТ необходимо довести содержание титана и его соединений до сверхмалых количеств. Такая концентрация УНТ была найдена и в последующих опытах использовалась оптимальная концентрация в количестве 0,01 г на 1 л анализируемой воды.

Атомно-эмиссионный анализ показал наличие атомарного Ti и его катионов (Ti +2 , Ti +4) в исследуемых пробах воды, из чего можно сделать вывод, что именно титан и катионы Ti +2 , Ti +4 взаимодействуют с углеродными нанотрубками. Радиус атома Ti составляет 147 пм, т.е. катионы титана могут как интеркалировать в полость углеродной нанотрубки и адсорбироваться внутри (фиг. 1), так и адсорбироваться на ее внешней поверхности, образовывая также мостиковую структуру с атомами углерода гексагонов (фиг. 2), образовывая связанные молекулярные структуры.

Внедрение Ti и его катионов в полость УНТ возможно путем пошагового приближения Ti к нанотрубке вдоль ее главной продольной оси и проникновением атомов титана и его катионов в полость нанотрубки с их дальнейшей адсорбцией на внутренней поверхности УНТ. Известен также другой вариант адсорбции Ti , согласно которому один атом титана может создавать устойчивые Ti-C связи с атомами углерода с внешней стороны углеродной нанотрубки в двух простых случаях, когда Ti находится в 1/4 и 1/2 всех гексагонов (фиг. 3).

То есть адсорбция титана и его катионов на поверхности УНТ является не только теоретически доказанным фактом, но и экспериментально доказано в исследованиях.

Заявляемый сорбент представляет собой конгломерат однослойных углеродных нанотрубок, обладающих способностью вступать в активное взаимодействие с титаном и его катионами, образуя устойчивые связи, и возможностью адсорбции атомов титана и его соединений на внутренней и внешней поверхностях УНТ с образованием мостиковых структур с двумя связями Ti-C, если Ti +2 или четырьмя для Ti +4 . При очистке воды, загрязненной титаном и его соединениями, используют УНТ, происходит адсорбция титана на поверхностях УНТ за счет Ван-дер-Ваальсовых сил, то есть титан и его соединения из свободных атома и катионов Ti +2 и Ti +4 становится связанным в молекулярное соединение (фиг. 4).

Возможность осуществления изобретения иллюстрируется следующими примерами.

Пример 1. Подземная вода из скважины 1) глубиной 40 м взята для исследования на содержание качественного элементного состава, а также количественного анализа на содержание титана и его соединений до очистки с помощью УНТ и после адсорбции УНТ, и обработки ультразвуком. Время воздействия ультразвука 15 мин. Содержание Ti и его соединений после очистки 0% (табл. 2).

Пример 2. Подземная вода из скважины 2) глубиной 41 м, в отличие от скважины 1) эта вода находилась на расстоянии 200 м от скважины 1) Береславского водохранилища (г. Волгоград). Время воздействия ультразвука 15 мин. Содержание Ti и его соединений после очистки 0% согласно предлагаемому изобретению (табл. 2).

Пример 3. Вода взята из водопроводного крана (Советский р-он, г. Волгограда) подверглась очистке с помощью УНТ и воздействием ультразвука в течение 15 мин, мощностью 50 Вт и рабочей частотой ультразвука 42 кГц (табл. 2).

Пример 4. Все то же что и в примере 1, но время воздействия ультразвука 1 мин.

Пример 5. Подземная вода из скважины 1) глубиной 40 м взята для анализа на содержание титана и его соединений, а затем подвергнута очистке согласно прототипа [Патент RU 2277013 ].

Время воздействия ультразвуком 15 мин (опыт 1, 2, 3, 5). Время воздействия ультразвуком 1 мин (опыт 4).

К преимуществам заявленного способа на основе УНТ можно отнести очень высокую степень адсорбции титана и его соединений. Согласно результатам эксперимента обеспечивается 100%-ная очистка исследуемых вод от титана и его соединений в оптимальных условиях.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок (УНТ) и ультразвука, включающий приведение загрязненных вод в контакт с адсорбентами для улавливания тяжелых металлов, отличающийся тем, что в качестве адсорбента используются углеродные нанотрубки, которые помещают в ультразвуковую ванну, воздействуя на УНТ и очищаемую воду в режиме 1-15 мин, с частотой ультразвука 42 кГц и мощностью 50 Вт.

ние в серной кислоте, содержащей хромовый ангидрид. Однако необходимо предварительное удаление крупной фракции гранул наноалмаза. Список литературы 1. Spitsyn B.V., Davidson J.L., Gradoboev M.N., Galushko T.B., Serebryakova N.V., Karpukhina T.A., Kulakova I.I., Melnik N.N. Inroad to modification of detonation nanodiamond // Diamond and Related Materials, 2006, Vol. 15, p. 296-299 2. Пат. 5-10695, Япония (А), Хромопокрывающий раствор, Tokyo Daiyamondo Kogu Seisakusho K.K., 27.04.1993 3. Долматов, В.Ю. Ультрадисперсные алмазы детонационного синтеза как основа нового класса композиционных металл-алмазных гальванических покрытий/ В.Ю.Долматов, Г.К.Буркат // Сверхтвердые материалы, 2000, Т. 1.- С. 84-94 4. Gregory R. Flocculation and sedimentation - the basic principles // Spec. Chem., 1991, Vol. 11, № 6, p. 426-430 УДК 661.66 Н.Ю. Бирюкова1, А. Н. Коваленко1, С.Ю. Царева1, Л.Д. Исхакова2, Е.В. Жариков1 Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия Научный центр волоконной оптики РАН, Москва, Россия 1 2 ОЧИСТКА УГЛЕРОДНЫХ НАНОТРУБОК, ПОЛУЧЕННЫХ МЕТОДОМ КАТАЛИТИЧЕСКОГО ПИРОЛИЗА БЕНЗОЛА In this work the results of experimental studies of purification and separation of multi-walled nanotubes by physical and chemical methods are presented. The efficiency of each stage has been controlled by studying of morphological characteristics of pyrolysis products. В работе представлены результаты экспериментальных исследований очистки и разделения многослойных углеродных нанотрубок физическими и химическими методами. Эффективность каждой стадии очистки контролировали по изменению морфологических характеристик продуктов пиролиза. Метод каталитического пиролиза углеводородов является одним из перспективных методов синтеза углеродных нанотрубок. Метод позволяет получать однослойные, многослойные нанотрубки, ориентированные массивы углеродных наноструктур при соответствующей организации параметров синтеза. Вместе с тем, продукт, полученный пиролизом углеродосодержащих соединений, наряду с нанотрубками содержит значительное количество примесей, таких как частицы катализатора, аморфный углерод, фуллерены и др. Для удаления этих примесей обычно используют физические методы (центрифугирование, ультразвуковое воздействие, фильтрация) в сочетании с химическими (окисление в газовых или жидких средах при повышенных температурах). В работе отрабатывалась комбинированная методика очистки и разделения многослойных нанотрубок от побочных продуктов, определялась эффективность различных реагентов. Исходный депозит был получен методом каталитического пиролиза бензола с использованием в качестве предкатализатора пентакарбонила железа. Депозит обрабатывался соляной, серной и азотной кислотами. Агрегаты нанотрубок разбивали ультразвуком с частотой 22 кГц. Для разделения депозита по фракциям использовали центрифугирование (3000 об/мин, продолжительность обработки – до 1 часа). Кроме кислотной, использовали также термическую обработку нанотрубок на У С П Е Х И в химии и химической технологии. Том XXI. 2007. №8 (76) 56 воздухе. Для достижения наилучшей очистки устанавливалась оптимальная последовательность различных методов. Морфологические характеристики продуктов пиролиза и степень очистки контролировали методами сканирующей электронной микроскопии, рамановской спектроскопии и рентгенофазового анализа. УДК 541.1 Е.Н. Голубина, Н.Ф. Кизим, В.В. Москаленко Новомосковский институт Российского химико-технологического университета им. Д.И. Менделеева, Новомосковск, Россия ВЛИЯНИЕ НАНОСТРУКТУР НА ОСОБЕННОСТИ ЭКСТРАКЦИИ В СИСТЕМЕ ВОДА – ErCl3 – Д2ЭГФК – ГЕПТАН КИНЕТИКИ The kinetic feature of extracted Er(III) the solution of D2EHPA in heptane (the concentrated area on kinetic curve, the high rate of its accumulation at dynamic interfacial layers in beginning of process, the extremal disposition in depending of reviewed thickness of dynamic interfacial layers from ratio concentration element and solvent) are indicate at significant part of nanostructures in process of extraction. Кинетические особенности извлечения эрбия (III) растворами Д2ЭГФК в гептане (концентрационные площадки на кинетических кривых, высокая скорость его накопления в ДМС в начале процесса, экстремальный характер зависимости наблюдаемой толщины ДМС от соотношения концентраций элемента и экстрагента) указывают на существенную роль наноструктур в процессе экстракции. Известно , что в экстракционных системах могут возникать различные нанообъекты: адсорбционные слои, мицеллы, мицеллярные гели, везикулы, полимерные гели, кристаллические гели, микроэмульсия, нанодисперсия, эмульсия. В частности, в системе La(OH)3-Д2ЭГФК-декан-вода образуется органогель, пространственная структура которого построена из палочкообразных частиц диаметром ≈0,2 и длиной 2-3 мкм . Натриевая соль Д2ЭГФК в отсутствии воды образует обратные цилиндрические мицеллы с радиусом 53 нм . В поперечном сечении мицеллы располагаются три молекулы NaД2ЭГФ, ориентированных полярными группами к центру и углеводородными цепями в сторону органического растворителя. Состояние такой решетки зависит от природы элемента . В случае Со(Д2ЭГФ)2 образуются макромолекулярные структуры со значением числа агрегации больше 225. В случае Ni(Д2ЭГФ)2 (возможно и Ni(Д2ЭГФ)2⋅2Н2О) возникают агрегаты с числом агрегации ≈5,2. При определенных условиях возможно образование полимерных молекулярных структур с гидродинамическим радиусом ≈15 нм. При экстракции лантана растворами Д2ЭГФК происходит образование объемного и структурно-жесткого алкилфосфата лантана, что обуславливает снижение эластичности монослоя алкилфосфата лантана на границе раздела фаз . Образование наноструктур оказывает влияние, как на равновесные свойства системы, так и на кинетику процесса. Экстракция РЗЭ осложнена протеканием многочисленных межфазных процессов, таких как возникновение и развитие спонтанной поверхностной конвекции (СПК), образование структурно-механического барьера, диспергирование фаз и т.п. В результате химической реакции между Д2ЭГФК и элементом образуется труднорастворимая соль, которая обуславливает образование наноструктур по механизму «от меньшего к большему» . Целью данной работы явилось установление влияния наноструктур на кинетические особенности экстракции эрбия(III) растворами Д2ЭГФК в гептане. У С П Е Х И в химии и химической технологии. Том XXI. 2007. №8 (76) 57

Министерство образования и науки Российской Федерации

Федеральное государственное учреждение высшего профессионального образования

Российский химико-технологический университет им. Д. И. Менделеева

Факультет нефтегазохимии и полимерных материалов

Кафедра химической технологии углеродных материалов

ОТЧЕТ ПО ПРАКТИКЕ

на тему УГЛЕРОДНЫЕ НАНОТРУБКИ И НАНОВОЛКНА

Выполнил: Маринин С. Д.

Проверил: доктор химических наук, Бухаркина Т. В.

Москва, 2013 г.

Введение

Сфера нанотехнологий считается во всем мире ключевой темой для технологий XXI века. Возможности их разностороннего применения в таких областях экономики, как производство полупроводников, медицина, сенсорная техника, экология, автомобилестроение, строительные материалы, биотехнологии, химия, авиация и космонавтика, машиностроение и текстильная промышленность, несут в себе огромный потенциал роста. Применение продукции нанотехнологий позволит сэкономить на сырье и потреблении энергии, сократить выбросы в атмосферу и будет способствовать тем самым устойчивому развитию экономики.

Разработками в сфере нанотехнологий занимается новая междисциплинарная область - нанонаука, одним из направлений которой является нанохимия. Нанохимия возникла на стыке веков, когда казалось, что в химии уже все открыто, все понятно и остается только использовать на благо общества приобретенные знания.

Химики всегда знали и хорошо понимали значение атомов и молекул как основных «кирпичиков» огромного химического фундамента. В то же время развитие новых методов исследования, таких как электронная микроскопия, высокоселективная масс-спектроскопия, в сочетании со специальными методами приготовления образцов позволило получать информацию о частицах, содержащих небольшое, менее сотни, количество атомов.

У подобных частиц размером около 1 нм (10-9 м - это всего лишь миллиметр, поделенный на миллион) обнаружены необычные, труднопредсказуемые химические свойства.

Наиболее известными и понятными для большинства людей являются следующие такие наноструктуры, как фуллерены, графен, углеродные нанотрубки и нановолокна. Все они состоят из атомов углерода, связанных между собой, но форма их существенно различается. Графен представляет собой плоскость, монослой, «покрывало» из атомов углерода в SP2 гибридизации. Фуллерены - замкнутые многоугольники, чем-то напоминающие футбольный мяч. Нанотрубки - цилиндрические полые объемные тела. Нановолокна могут представлять собой конусы, цилиндры, чаши.В своей работе я постараюсь осветить именно нанотрубки и нановолокна.

Строение нанотрубок и нановолокон

Что такое углеродные нанотрубки? Углеродные нанотрубки это углеродный материал, представляющий собой цилиндрические структуры с диаметром порядка нескольких нанометров, состоящие из свернутых в трубку графитовых плоскостей. Графитовая плоскость представляет собой непрерывную гексагональную сетку с атомами углерода в вершинах шестиугольников. Углеродные нанотрубки могут различаться по длине, диаметру, хиральности (симметрии свернутой графитовой плоскости) и по количеству слоев. Хиральность <#"280" src="/wimg/13/doc_zip1.jpg" />

Одностенные нанотрубки. Однослойные углеродные нанотрубки (ОСУНТ) - подвид углеродных нановолокон со структурой, образованной сворачиванием графена в цилиндр с соединением его сторон без шва. Сворачивание графена в цилиндр без шва возможно только конечным числом способов, отличающихся направлением двумерного вектора, который соединяет две эквивалентные точки на графене, совпадающие при его сворачивании в цилиндр. Этот вектор называется вектором хиральностиоднослойной углеродной нанотрубки. Таким образом, однослойные углеродные нанотрубки различаются диаметром и хиральностью. Диаметр однослойных нанотрубок, по экспериментальным данным, варьируется от ~ 0,7 нм до ~ 3-4 нм. Длина однослойной нанотрубки может достигать 4 см. Существуют три формы ОСУНТ: ахиральные типа «кресла» (две стороны каждого шестиугольника ориентированы перпендикулярно оси УНТ), ахиральные типа «зигзаг» (две стороны каждого шестиугольника ориентированы параллельно оси УНТ) и хиральные или спиралевидные (каждая сторона шестиугольника расположена к оси УНТ под углом, отличные от 0 и 90º). Так, ахиральные УНТ типа «кресла» характеризуют индексами (n,n), типа «зигзаг» - (n,0), хиральные - (n,m).

Число слоев в МСУНТ чаще всего составляет не больше 10, но в отдельных случаях достигает нескольких десятков.

Иногда среди многослойных нанотрубок выделяют как особый вид двухслойные нанотрубки. Структура типа «русской матрёшки» (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга цилиндрических трубок. Другая разновидность этой структуры представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур напоминает свиток (scroll). Для всех структур на рис. характерно значение расстояния между соседними графеновыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита <#"128" src="/wimg/13/doc_zip3.jpg" />

Русская матрешка Рулон Папье-маше

Углеродные нановолокна (УНВ) представляют собой класс таких материалов, в которых изогнутые графеновые слои или наноконусы сложены в форме одномерной нити, чья внутренняя структура может быть охарактеризована углом α между слоями графена и осью волокна. Одно из распространенных различий отмечается между двумя основными типами волокон: «Елочка», с плотно уложенными коническими графеновыми слоями и большими α, и «Бамбук», с цилиндрическими чашеподобными графеновыми слоями и малыми α, которые больше похожи на многослойные углеродные нанотрубки <#"228" src="/wimg/13/doc_zip4.jpg" />

а - нановолокно "столбик монет";

б - нановолокно "елочной структуры" (стопка конусов, "рыбья кость");

в - нановолокно "стопка чашек" ("ламповые абажуры");

г - нанотрубка "русская матрешка";

д - бамбукообразное нановолокно;

е - нановолокно со сферическими секциями;

ж - нановолокно с полиэдрическими секциями

Выделение в отдельный подвид углеродных нанотрубок обусловлено тем, что их свойства заметно отличаются в лучшую сторону от свойств других типов углеродных нановолокон. Это объясняется тем, что графеновый слой, образующий стенку нанотрубки вдоль всей ее длины, имеет высокие прочность на разрыв, тепло- и электропроводность. В противоположность этому в углеродных нановолокнах при движении вдоль стенки встречаются переходы с одного графенового слоя на другой. Наличие межслоевых контактов и высокая дефектность структуры нановолокон существенно ухудшает их физические характеристики.

История

Трудно говорить об истории нанотрубок и нановолокон отдельно, ведь эти продукты часто сопутствуют друг другу при синтезе. Одним из первых данных о получении углеродных нановолокон, вероятно, является патент от 1889 на получение трубчатых форм углерода, образующихся при пиролизе смеси СН4 и Н2 в железном тигле Хьюзом и Чамберсом. Они использовали смесь метана и водорода для выращивания углеродных нитей путем пиролиза газа с последующим осаждением углерода. Говорить о получении этих волокон наверняка, стало возможно гораздо позже, когда появилась возможность изучить их структуру с помощью электронного микроскопа. Первое наблюдение углеродных нановолокон с помощью электронной микроскопии было сделано в начале 1950-х годов советскими учеными Радушкевичем и Лукьяновичем, которые опубликовали статью в советском Журнале физической химии, в которой показали полые графитовые волокна углерода, которые составляли 50 нанометров в диаметре. В начале 1970-х годов, японским исследователям Кояме и Эндо удалось получить углеродные волокна осаждением из газовой фазы (VGCF) с диаметром 1 мкм и длиной более 1 мм. Позднее, в начале 1980-х, Тиббетс в США и Бениссад во Франции продолжили совершенствовать процесс получения углеродных волокон (VGCF). В США, более глубокие исследования, посвященные синтезу и свойствам этих материалов для практического применения, проводились Р. Терри К. Бейкером и были мотивированы необходимостью подавлять рост углеродных нановолокон из-за постоянных проблем вызванных накоплением материала в различных коммерческих процессах, особенно в области переработки нефти. Первая попытка коммерциализации углеродных волокон выращенных из газовой фазы была предпринята японской компанией Nikosso в 1991 году под торговой маркой Grasker, в том же году Иджима опубликовал свою знаменитую статью, сообщающую об открытии углеродных нанотрубок <#"justify">Получение

В настоящее время, в основном, используются синтезы на основе пиролиза углеводородов и возгонки и десублимации графита.

  • электродуговой способ,
  • лучевое нагревание (использование солнечных концентраторов или лазерного излучения),
  • лазерно-термический,
  • нагревание электронным или ионным пучком,
  • возгонка в плазме,
  • резистивное нагревание.

Многие из указанных вариантов имеют свои разновидности. Иерархия части вариантов электродугового способа приведена на схеме:

В настоящее время наиболее распространённым является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под давлением около 500 мм рт. ст. При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, в котором формируются нанотрубки углерода. Максимальное количество нанотрубок образуется тогда, когда ток плазмы минимален и его плотность около 100 А/см2. В экспериментальных установках напряжение между электродами составляет около 15-25 В, ток разряда несколько десятков ампер, расстояние между концами графитовых электродов 1-2 мм. В процессе синтеза около 90% массы анода осаждается на катоде. Образующиеся многочисленные нанотрубки имеют длину около 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм.

Пучки нанотрубок регулярно покрывают поверхность катода, образую сотовую структуру. Содержание нанотрубок в углеродном осадке около 60%. Для разделения компонентов полученный осадок помещают в метанол и обрабатывают ультразвуком. В результате получается суспензия, которая после добавления воды подвергается разделению в центрифуге. Крупные частицы прилипают к стенкам центрифуги, а нанотрубки остаются плавающими в суспензии. Затем нанотрубки промывают в азотной кислоте и просушивают в газообразном потоке кислорода и водорода в соотношении 1:4 при температуре 7500 C в течение 5 минут. В результате такой обработки получается лёгкий пористый материал, состоящий из многочисленных нанотрубок со средним диаметром 20 нм и длиной 10 мкм. Пока максимальная достигнутая длина нановолокна - 1 см.

Пиролиз углеводородов

По выбору исходных реагентов и способам ведения процессов эта группа имеет значительно большее число вариантов, чем методы возгонки и десублимации графита. Она обеспечивает более четкое управление процессом образования УНТ, в большей степени подходит для крупномасштабного производства и позволяет производить не только сами углеродные наноматериалы, но и определенные структуры на подложках, макроскопические волокна, состоящие из нанотрубок, а также композиционные материалы, в частности, модифицированные углеродными УНТ углеродные волокна и углеродную бумагу, керамические композиты. С использованием недавно разработанной наносферной литографии удалось получить фотонные кристаллы из УНТ. Таким путем можно выделять УНТ определенного диаметра и длины.

К достоинствам пиролитического метода, кроме того, относится возможность его реализации для матричного синтеза, например с использованием пористых мембран из оксида алюминия или молекулярных сит. С помощью оксида алюминия удается получать разветвленные УНТ и мембраны из УНТ. Главными недостатками матричного метода являются высокая стоимость многих матриц, их малые размеры и необходимость применения активных реагентов и жестких условий для растворения матриц.

Чаще других для синтеза УНТ и УНВ используются процессы пиролиза трех углеводородов: метана, ацетилена и бензола, а также термическое разложение (диспропорционирование) СО. Метан, как и оксид углерода, не склонен к разложению при низких температурах (некаталитическое разложение метана начинается при ~900 оС), что позволяет синтезировать ОУНТ с относительно небольшим количеством примеси аморфного углерода. Оксид углерода не разлагается при низких температурах по другой причине: кинетической. Разница в поведении различных веществ видна на рис. 94.

К преимуществам метана перед другими углеводородами и оксидом углерода относится то, что его пиролиз с образованием УНТ или УНВ сочетается с выделением Н2 и может быть использован в уже действующих производствах Н2.

Катализаторы

Катализаторами процессов образования УНТ и УНВ служат Fe, Co и Ni; промоторами, которые вводятся в меньших количествах, выступают преимущественно Mo, W или Cr (реже - V, Mn, Pt и Pd), носителями катализаторов - нелетучие оксиды и гидроксиды металлов (Mg, Ca, Al, La, Si, Ti, Zr), твердые растворы, некоторые соли и минералы (карбонаты, шпинели, перовскиты, гидротальцит, природные глины, диатомиты), молекулярные сита (в частности, цеолиты), силикагель, аэрогель, алюмогель, пористый Si и аморфный C. При этом V, Cr, Mo, W, Mn и, вероятно, некоторые другие металлы в условиях проведения пиролиза находятся в виде соединений - оксидов, карбидов, металлатов и др.

В качестве катализаторов могут применяться благородные металлы (Pd, Ru, PdSe), сплавы (мишметалл, пермаллой, нихром, монель, нержавеющая сталь, Co-V, Fe-Cr, Fe-Sn, Fe-Ni-Cr, Fe-Ni-C, Co-Fe-Ni, твердый сплав Co-WC и др.), CoSi2 и CoGe2, LaNi5, MmNi5 (Mm - мишметалл), сплавы Zr и других гидридообразующих металлов. Напротив, Au и Ag ингибируют образование УНТ.

Катализаторы могут наноситься на кремний, покрытый тонкой оксидной пленкой, на германий, некоторые виды стекла и подложки из других материалов.

Идеальным носителем катализаторов считается пористый кремний, получаемый электрохимическим травлением монокристаллического кремния в растворе определенного состава. Пористый кремний может содержать микропоры (< 2 нм), мезопоры и макропоры (> 100 нм). Для получения катализаторов используют традиционные методы:

  • смешение (реже спекание) порошков;
  • напыление или электрохимическое осаждение металлов на подложку с последующим превращением сплошной тонкой пленки в островки наноразмеров (применяют также послойное напыление нескольких металлов;
  • химическое осаждение из газовой фазы;
  • окунание подложки в раствор;
  • нанесение суспензии с частицами катализатора на подложку;
  • нанесение раствора на вращающуюся подложку;
  • пропитка инертных порошков солями;
  • соосаждение оксидов или гидроксидов;
  • ионный обмен;
  • коллоидные методы (золь-гель процесс, метод обратных мицелл);
  • термическое разложение солей;
  • сжигание нитратов металлов.

Помимо описанных выше двух групп, разработано большое число других методов получения УНТ. Классифицировать их можно по используемым источникам углерода. Исходными соединениями служат: графит и другие формы твердого углерода, органические соединения, неорганические соединения, металлоорганические соединения. Графит может быть превращен в УНТ несколькими путями: интенсивным шаровым помолом с последующим высокотемпературным отжигом; электролизом расплавленных солей; расщеплением на отдельные графеновые листки и последующим самопроизвольным скручиванием этих листков. Аморфный углерод может быть превращен в УНТ при обработке в гидротермальных условиях. Из технического углерода (сажа) УНТ получались при высокотемпературной трансформации в присутствии катализаторов или без них, а также при взаимодействии с водяным паром под давлением. Нанотрубчатые структуры содержатся в продуктах вакуумного отжига (1000 оС) пленок алмазоподобного углерода в присутствии катализатора. Наконец, каталитическая высокотемпературная трансформация фуллерита С60 или его обработка в гидротермальных условиях также ведут к образованию УНТ.

Углеродные нанотрубки существуют в природе. Группа мексиканских исследователей обнаружила их в образцах нефти, извлеченных с глубины 5,6 км (Веласко-Сантос, 2003). Диаметр УНТ составлял от нескольких нанометров до десятков нанометров, длина достигала 2 мкм. Некоторые из них были заполнены различными наночастицами.

Очистка углеродных нанотрубок

Ни один из распространенных способов получения УНТ не позволяет выделить их в чистом виде. Примесями к НТ могут быть фуллерены, аморфный углерод, графитизированные частицы, частицы катализатора.

  1. разрушающие,
  2. неразрушающие,
  3. комбинированные.

Разрушающие методы используют химические реакции, которые могут быть окислительными или восстановительными и основаны на различиях в реакционной способности различных углеродных форм. Для окисления используют либо растворы окислителей, либо газообразные реагенты, для восстановления - водород. Методы позволяют выделять УНТ высокой чистоты, но связаны с потерями трубок.

Неразрушающие методы включают экстрагирование, флокуляцию и селективное осаждение, микрофильтрацию с перекрестным током, вытеснительную хроматографию, электрофорез, селективное взаимодействие с органическими полимерами. Как правило, эти методы малопроизводительны и неэффективны.

Свойства углеродных нанотрубок

Механические.Нанотрубки, как было сказано, являются на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки не "рвутся", а перестраиваются. Основываясь на таком свойстве нанотрубок как высокая прочность, можно утверждать, что они являются наилучшим материалом для троса космического лифта на данный момент. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали. Приведённый ниже график показывает сравнение однослойной нанотрубки и высокопрочной стали.

1 2

Трос космического лифта по подсчётам должен выдерживать механическое напряжение 62,5 ГПа

Диаграмма растяжения (зависимость механического напряжения σ от относительного удлинения ε)

Чтобы продемонстрировать существенное различие между самыми прочными на текущий момент материалами и углеродными нанотрубками, проведём следующий мысленный эксперимент. Представим, что, как это предполагалось ранее, тросом для космического лифта будет служить некая клиновидная однородная структура, состоящая из самых прочных на сегодняшний день материалов, то диаметр троса у GEO (geostationary Earth orbit) будет около 2 км и сузится до 1 мм у поверхности Земли. В этом случае общая масса составит 60*1010 тонн. Если бы в качестве материала использовались углеродные нанотрубки, то диаметр троса у GEO составил 0,26 мм и 0,15 мм у поверхности Земли, в связи с чем общая масса была 9,2 тонн. Как видно из вышеуказанных фактов, углеродное нановолокно - это как раз тот материал, который необходим при постройке троса, реальный диаметр которого составит около 0,75 м, чтобы выдержать также электромагнитную систему, использующуюся для движения кабины космического лифта.

Электрические.Вследствие малых размеров углеродных нанотрубок только в 1996 году удалось непосредственно измерить их удельное электрическое сопротивление четырёхконтактным способом.

На полированную поверхность оксида кремния в вакууме наносили золотые полоски. В промежуток между ними напыляли нанотрубки длиной 2-3 мкм. Затем на одну из выбранных для измерения нанотрубок наносили 4 вольфрамовых проводника толщиной 80 нм. Каждый из вольфрамовых проводников имел контакт с одной из золотых полосок. Расстояние между контактами на нанотрубке составляло от 0,3 до 1 мкм. Результаты прямого измерения показали, что удельное сопротивление нанотрубок может изменяться в значительных пределах - от 5,1*10-6 до 0,8 Ом/см. Минимальное удельное сопротивление на порядок ниже, чем у графита. Большая часть нанотрубок обладает металлической проводимостью, а меньшая проявляет свойства полупроводника с шириной запрещённой зоны от 0,1 до 0,3 эВ.

Французскими и российскими исследователями (из ИПТМ РАН, Черноголовка) было открыто ещё одно свойство нанотрубок, как сверхпроводимость. Они проводили измерения вольт-амперных характеристик отдельной однослойной нанотрубки диаметром ~1нм, свернутого в жгут большого числа однослойных нанотрубок, а также индивидуальных многослойных нанотрубок. Сверхпроводящий ток при температуре, близкой к 4К, наблюдался между двумя сверхпроводящими металлическими контактами. Особенности переноса заряда в нанотрубке существенно отличаются от тех, которые присущи обычным, трехмерным проводникам и, по-видимому, объясняются одномерным характером переноса.

Также де Гиром из Университета Лозанны (Швейцария) было обнаружено интересное свойство: резкое (около двух порядков величины) изменение проводимости при небольшом, на 5-10о, изгибе однослойной нанотрубки. Это свойство может расширить область применения нанотрубок. С одной стороны, нанотрубка оказывается готовым высокочувствительным преобразователем механических колебаний в электрический сигнал и обратно (фактически это - телефонная трубка длиной в несколько микрон и диаметром около нанометра), а, с другой стороны, это - практически готовый датчик мельчайших деформаций. Такой датчик мог бы найти применение в устройствах, контролирующих состояние механических узлов и деталей, от которых зависит безопасность людей, например, пассажиров поездов и самолетов, персонала атомных и тепловых электростанций и т. п.

Капиллярные. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами. Чтобы открыть нанотрубку, надо удалить верхнюю часть - крышечку. Один из способов удаления заключается в отжиге нанотрубок при температуре 8500 C в течение нескольких часов в потоке углекислого газа. В результате окисления около 10% всех нанотрубок оказываются открытыми. Другой способ разрушения закрытых концов нанотрубок - выдержка в концентрированной азотной кислоте в течение 4,5 часов при температуре 2400 C. В результате такой обработки 80% нанотрубок становятся открытыми.

Первые исследования капиллярных явлений показали, что жидкость проникает внутрь канала нанотрубки, если её поверхностное натяжение не выше 200 мН/м. Поэтому для ввода каких-либо веществ внутрь нанотрубок используют растворители, имеющие низкое поверхностное натяжение. Так, например, для ввода в канал нанотрубки некоторых металлов используют концентрированную азотную кислоту, поверхностное натяжение которой невелико (43 мН/м). Затем проводят отжиг при 4000 C в течение 4 часов в атмосфере водорода, что приводит к восстановлению металла. Таким образом были получены нанотрубки, содержащие никель, кобальт и железо.

Наряду с металлами углеродные нанотрубки могут заполняться газообразными веществами, например водородом в молекулярном виде. Эта способность имеет практическое значение, ибо открывает возможность безопасного хранения водорода, который можно использовать в качестве экологически чистого топлива в двигателях внутреннего сгорания. Также ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния(см. Рис.5).

Рис. 5. Внутри C60 внутри однослойной нанотрубки

Капиллярные эффекты и заполнение нанотрубок

нанотрубка углеродный пиролиз электродуговой

Капиллярные явления в углеродных нанотрубках впервые осуществлены экспериментально в работе, где наблюдался эффект капиллярного втягивания расплавленного свинца внутрь нанотрубок. В этом эксперименте электрическая дуга, предназначенная для синтеза нанотрубок зажигалась между электродами диаметром 0,8 и длиной 15 см при напряжении 30 В и токе 180 - 200 А. Образующийся на поверхности катода в результате термического разрушения поверхности анода слой материала высотой 3-4 см извлекался из камеры и выдерживался в течение 5 ч при Т = 850° С в потоке углекислого газа. Эта операция, в результате которой образец потерял около 10% массы, способствовала очистке образца от частиц аморфного графита и открытию нанотрубок, находящихся в осадке. Центральная часть осадка, содержащего нанотрубки, помещалась в этанол и обрабатывалась ультразвуком. Диспергированный в хлороформе продукт окисления наносился на углеродную ленту с отверстиями для наблюдения с помощью электронного микроскопа. Как показали наблюдения, трубки, не подвергавшиеся обработке, имели бесшовную структуру, головки правильной формы и диаметр от 0,8 до 10 нм. В результате окисления около 10% нанотрубок оказались с поврежденными шапочками, а часть слоев вблизи вершины была содрана. Предназначенный для наблюдений образец, содержащий нанотрубки, заполнялся в вакууме каплями расплавленного свинца, которые получали в результате облучения металлической поверхности электронным пучком. При этом на внешней поверхности нанотрубок наблюдались капельки свинца размером от 1 до 15 нм. Нанотрубки отжигались в воздухе при Т = 400°С (выше температуры плавления свинца) в течение 30 мин. Как показывают результаты наблюдений, выполненных с помощью электронного микроскопа, часть нанотрубок после отжига оказалась заполненной твердым материалом. Аналогичный эффект заполнения нанотрубок наблюдался при облучении головок трубок, открывающихся в результате отжига, мощным электронным пучком. При достаточно сильном облучении материал вблизи открытого конца трубки плавится и проникает внутрь. Наличие свинца внутри трубок установлено методами рентгеновской дифракции и электронной спектроскопии. Диаметр самого тонкого свинцового провода составлял 1,5 нм. Согласно результатам наблюдений число заполненных нанотрубок не превышало 1%.